Автомобили

Диагностирование электронных систем управления автомобилем

Назначение всех диагностических систем — унифицированное определение неисправностей в различных узлах и агрегатах автомобиля для принятия решения о последующем ремонте. Дo 1994 г. в мировой автомобильной промышленности применялись различные системы, стандарты и протоколы для диагностики OBD-I (On Board Diagnostic). Коды диагностики OBD-I были двузначными (их также называют короткими — в отличие от длинных пятизначных кодов расширенной диагностики более поздних систем). Считывание кодов неисправностей систем OBD-I осуществлялось с помощью контрольной лампы, например Сheck Engine («Проверьте двигатель»). Процедура считывания кодов систем OBD-I напоминала азбуку Морзе: короткие импульсы (длительностью 0,2…0,3 с) обозначают единицы, а длинные (1,2…2,0 с) — десятки (рис. 1). После визуального считывания импульсов их значение может быть расшифровано с использованием специальных таблиц.

Пример высвечивания кода неисправности систем OBD-I

Рис. 1. Пример высвечивания кода неисправности систем OBD-I: 1…3 — число импульсов

Это наиболее простой вид бортового диагностирования, которое заключается в условном присвоении ряду неисправностей электронной системы управления цифровых кодов, которые при проявлении соответствующих им неисправностей заносятся в память ЭБУ системой.

В середине 1990-х гг. начали появляться так называемые расширенные системы, которые долгое время сосуществовали с прежними, но с 1996 г. по требованию Агентства по защите окружающей среды США (US Environmental Protection Agency, US EPA) и благодаря усилиям Ассоциации инженеров автомобилестроения (Society of Automotive Engineers, SAE) повсеместно были внедрены единые стандарты самодиагностики, протоколов обмена данными, унифицированы требования к диагностическим средствам и структуре кодов. Таким образом, начиная с этого времени все автомобили и грузовики малой грузоподъемности, произведенные для продажи в США, оборудуются единой системой самодиагностики в соответствии со стандартом OBD-II, а с 2000 г. и в Европе (стандарт EOBD) все новые автомобили диагностируются только по этому стандарту.

В системах семейства OBD-I было предусмотрено определение неисправностей ограниченного спектра (двигателя, подушек безопасности, тормозной системы ABS и автоматической коробки передач), в OBD-II перечень диагностируемых узлов расширен (быстрые коды). Кроме того, значительно увеличилось количество диагностических кодов (более 3000).

Требования стандарта OBD-II:

  • стандартный диагностический разъем;
  • стандартное размещение диагностического разъема;
  • стандартный протокол обмена данными между сканером и автомобильной бортовой системой диагностики;
  • стандартный список кодов неисправностей;
  • сохранение в памяти ЭБУ кадра значений параметров при появлении кода ошибки («замороженный» кадр);
  • мониторинг бортовыми диагностическими средствами элементов, отказ которых может привести к увеличению объемов токсичных выбросов в окружающую среду;
  • доступ как специализированных, так и универсальных сканеров к кодам ошибок, параметрам, «замороженным» кадрам, тестирующим процедурам и т.д.;
  • единый перечень терминов, сокращений, определений, используемых для элементов электронных систем автомобиля и кодов ошибок.

Для предупреждения водителя о неисправности электронной системы управления на панели приборного щитка загорается лампочка или надпись Check Engine.

По требованиям нормативных документов по безопасности движения некоторых стран, автомобиль, имеющий активные коды неисправности определенных электронных систем управления, не допускается к эксплуатации.

При запуске двигателя и отсутствии в нем неисправностей надпись Check Engine (лампочка) должна погаснуть после запуска двигателя. В более современных автомобилях (например, Ford Kuga) при включении зажигания загораются сигнализаторы и индикаторы (рис. 2).

Если при включении зажигания сигнализатор (индикатор) не загорается или загорается во время движения автомобиля, то это указывает на неисправность соответствующей системы.

Сигнализатор сообщений (см. рис. 2) предупреждает о появлении разных неисправностей, при этом цвет контрольной лампы в зависимости от значимости неисправности может быть желтым или красным. Конкретизация неисправности осуществляется на информационном дисплее (табл. 1).

Считывание полной информации с ЭБУ осуществляется через диагностический разъем с помощью специального устройства — сканера, фактически заменяющего центральный блок управления.

Пример сигнализаторов и индикаторов приборного щитка автомобиля

Рис. 2. Пример сигнализаторов и индикаторов приборного щитка автомобиля (расположение произвольное): 1—сигнализатор сообщений; 2 — сигнализатор неисправности антиблокировочной системы (ABS); 3 — индикатор усилителя рулевого управления; 4 — контрольная лампа избыточного скопления сажи; 5 — сигнализатор низкого уровня топлива; 6 — сигнализатор падения давления моторного масла; 7 — сигнализатор неисправности систем двигателя; 8 — индикатор системы динамической стабилизации

Контролируемые параметры и коды неисправностей считываются непосредственно с ЭБУ, при этом коды не только считываются, но и расшифровываются.

Таблица 1. Примеры сообщений информационного дисплея

Сообщение Цвет контрольной лампы Система
Низкий уровень тормозной жидкости Красный Тормозная система
Неисправность двигателя Красный Система двигателя
Низкий уровень жидкости омывателя Желтый  Стеклоомыватель

Диагностический разъем (рис. 3) размещается в пассажирском салоне (обычно под приборной панелью) и обеспечивает доступ к системным данным. К такому разъему может быть подключен любой сканер.

Схема стандартного 16-контактного диагностического разъема

Рис. 3. Схема стандартного 16-контактного диагностического разъема

Сканером, или сканирующим прибором, называют компьютерные тестеры, служащие для диагностирования различных электронных систем управления посредством считывания цифровой информации с диагностического разъема автомобиля (рис. 4). Обычно сканер подключается к компьютеру через последовательный порт для передачи данных.

Программируемый автомобильный сканер с персональным компьютером

Рис. 4. Программируемый сканер с персональным компьютером

Полнота диагностической информации, получаемой с помощью сканера, зависит, в первую очередь, от разработчика системы управления и во вторую — от производителя сканера. Сканеры различаются своими функциональными возможностями и спектром тестируемых автомобилей.

Сканер проверяет входные и выходные параметры электрических цепей и информирует оператора об их величине. Таким образом, он только фиксирует наличие или отсутствие неисправностей в каком-либо узле, но не позволяет определять их причины, которых может быть много для одних и тех же значений контролируемых параметров.

С программной точки зрения особенности тестируемого автомобиля в сканере учитываются при помощи дооснащения базового устройства соответствующим программным продуктом, отражающим специфику управляющей электроники автомобиля данной марки. Дополнительная программа может поставляться в виде перепрограммируемой карты внешней памяти (PCMCIA-карта), которая вставляется в сканер, что позволяет обновлять версии программы с помощью персонального компьютера, в том числе через Интернет. Обновление программного обеспечения актуально потому, что ни один производитель сканеров не выпускает на рынок программный продукт «на все времена», так как это просто невозможно. Универсальность сканера определяется глубиной охвата, тем, насколько полон список электронных систем, которые сканер может тестировать на автомобиле данной марки.

Специфика автомобилей разных производителей заключается в использовании не только разных протоколов обмена, но и диагностических разъемов различной конфигурации. Для учета этой особенности универсальные сканеры снабжаются комплектом кабелей-адаптеров для подключения к системе бортовой диагностики. Стремясь придать сканерам большую универсальность, отдельные разработчики снабжают свои сканеры дополнительными функциями: некоторые модели приборов имеют встроенный мультиметр, двухили четырехканальный осциллограф, блок проверки шин CAN и др.

Рассмотрим основные возможности сканеров.

1. Диагностирование блоков управления:

  • определение неисправностей (ошибок) электронной системы управления (рис. 5) и вывод из памяти данных о неисправностях, при этом на экране высвечиваются цифровые коды неисправностей, хранящиеся в памяти блока управления автомобилем;
  • отображение фактических значений измеряемых параметров. Этот режим позволяет оценить работу двигателя как в неподвижном состоянии, так и при движении автомобиля (рис. 6): напряжение в бортовой сети, температурное состояние двигателя и его датчиков, частоту вращения коленчатого вала, расход топлива, скорость движения и т.д.;
  • управление исполнительными механизмами (рис. 7);
  • обеспечение вывода графической информации (рис. 8) с фактическими значениями во время тестирования (кривые зависимости от времени);
  • использование других специальных возможностей блока управления, например, сброс или корректировка интервала обслуживания (рис. 9);
  • отображение расположения мест установки и распределения контактов диагностических разъемов (рис. 10).

Окно ошибок

Рис. 5. Окно ошибок

Окно фактических значений проверяемых параметров

Рис. 6. Окно фактических значений проверяемых параметров

Окно тестирования исполнительных элементов системы управления двигателем

Рис. 7. Окно тестирования исполнительных элементов системы управления двигателем

Окно проверки параметров в режиме графопостроения

Рис. 8. Окно проверки параметров в режиме графопостроения

Окно корректирования вида обслуживания

Рис. 9. Окно корректирования вида обслуживания

Расположение диагностического разъема

Рис. 10. Расположение диагностического разъема (VW Passat 2001–02/2005): 1 — диагностический разъем

2. Использование программного обеспечения:

  • проверка компонентов, схемы электрических соединений, положения установки компонентов. Указав курсором элемент схемы, можно получить название датчика и описание его работы;
  • нормативные данные проверяемых параметров (рис. 11);
  • инструкции по сборке/установке, информация по техническому обслуживанию (рис. 12);
  • поиск и заказ неисправного оборудования.

3. Использование мультиметра.

5. Использование осциллографа для регистрации значений, полученных при тестировании.

Наиболее функционально совершенным дилерским сканерам часто присуща и такая функция, как репрограмминг (чип-тюнинг), заключающаяся в способности сканера вносить изменения или дополнения в программу блока управления системой автомобиля.

Информация о любой ошибке сохраняется в памяти и может быть извлечена оттуда с помощью сканера. При получении сигнала об ошибке диагностическая система обязана ответить унифицировано: классифицировать неисправность по номеру (коду ошибки); предпринять корректирующие действия, предусмотренные управляющей программой на этот случай.

Окно сравнения фактических параметров с нормативными

Рис. 11. Окно сравнения фактических параметров с нормативными

Окно с технологией замены ремня газораспределительного механизма

Рис. 12. Окно с технологией замены ремня газораспределительного механизма

Возможности сканеров конкретного автомобиля определяются диагностическими функциями блока его управления, однако, как правило, все сканеры считывают и стирают коды неисправностей, выводят цифровые параметры в реальном масштабе времени, могут имитировать работу датчиков и исполнительных механизмов. Сканер подключается через специальный разъем на автомобиле к конкретному блоку управления или электронной системе в целом. Одной из функций, реализуемых сканерами, является проверка сигнала датчика на рациональность, т.е. на соответствие требуемым (штатным) сигналам.

Датчик может быть неисправным и посылать в блок управления неверную информацию. В случае если проверка сигнала датчика на рациональность в программе блока управления не предусмотрена, управляющие алгоритмы в них реализуются с использованием неверной информации датчика. При этом будут неправильно рассчитаны важные выходные параметры (например, угол опережения зажигания и длительность импульса открытия форсунок), что приведет к ухудшению ездовых характеристик автомобиля, двигатель может глохнуть после запуска и т.д. Однако пока в количественном выражении неверный сигнал с датчика будет в пределах нормы, никакие коды ошибок в память ЭБУ не запишутся и неисправность никак не обозначится.

Для обнаружения неисправности реализуется функция отключения «подозрительного» датчика. Тогда электронный блок запишет в память код ошибки и изменит сигнал с датчика на расчетное (резервное) значение. Например, при отключении датчика массового расхода воздуха его сигнал заменяется резервным сигналом, рассчитанным по положению дроссельной заслонки и частоте вращения коленчатого вала двигателя. Если после отключения «подозрительного» датчика работа двигателя улучшится, то это означает, что датчик неисправен.

В современных блоках управления по мере совершенствования программного обеспечения появляется возможность выявлять подобные неисправности. Это так называемая проверка на рациональность и правильное функционирование, которая реализуется в бортовых диагностических системах второго поколения (OBD-II), заключается в том, что текущие значения сигналов со всех датчиков постоянно проверяются на взаимооднозначное соответствие штатным сигналам для данного режима работы двигателя. Штатные значения сигналов хранятся в постоянной памяти микропроцессора электронного блока.

После технического обслуживания или ремонта все коды следует удалить из памяти блока управления, иначе блок будет ошибочно учитывать их при последующем управлении системами автомобиля. Применяют три метода удаления (стирания) кодов неисправностей:

  • стирание кодов по команде со сканера, подключенного к диагностическому разъему (на некоторых автомобилях старых моделей такая процедура невозможна, поскольку она не поддерживается блоком управления);
  • если сканера нет или электронный блок не поддерживает стирание кодов сканером, следует отключить питание блока путем извлечения соответствующего предохранителя. Вместе с кодами ошибок из памяти блока сотрется и информация для адаптивного управления;
  • отключение от «массы» шины аккумуляторной батареи. Следует иметь в виду, что в этом случае вместе с кодами стирается и прочая информация (установка времени на электронных часах, коды радиоприемника и т.д.).

Для удобства работы со сканерами их изготовители предусматривают беспроводную радиосвязь сканера с компьютером, что особенно важно при диагностировании крупногабаритных транспортных средств — грузовых автомобилей и автобусов. Для упрощения операций диагностирования может предлагаться специальный мобильный телефон с наушниками и микрофоном, которые подсоединены к системе связи с оператором производителя сканера. Оператор может войти в связь на расстоянии со сканером на СТО, оказывая необходимую поддержку для решения устранения неисправности. Кроме этого, может использоваться и телевизионная связь, что позволяет оператору производителя сканера наблюдать за показаниями сканера на расстоянии и дать рекомендации работнику СТО по устранению неисправности.

Фирма ТЕХА разработала специальное компактное устройство OBD Log (рис. 13) для анализа параметров и регистрации ошибок в реальном масштабе времени для систем управления двигателями автомобилей. Устройство вставляется в стандартный диагностический разъем и служит для сохранения всех данных, которые снимаются в течение нескольких дней при эксплуатации автомобиля.

Внешний вид диагностического устройства OBD

Рис. 13. Внешний вид диагностического устройства OBD Log фирмы TEXA

После считывания сохраненных данных можно проанализировать все отклонения в работе двигателя и его систем, которые не могут быть зафиксированы при проверке автомобиля в статическом состоянии. Во время движения автомобиля определяются: потери мощности при определенных режимах, провалы, неравномерная работа двигателя или кратковременные нарушения в работе датчиков. После каждой поездки горящая зеленая лампочка указывает, что никаких ошибок не было обнаружено, в то время как светящаяся красная лампочка показывает, что ошибка была записана и ее расшифровка доступна для просмотра.

Сохраненные данные могут быть загружены в любой компьютер, а специальное программное обеспечение позволяет просмотреть отчет, разделенный на поездки, что позволяет точно установить момент времени возникновения отклонений в работе двигателя.