Покрытия

Газопламенное и детонационное напыление

Основателем газотермического метода получения покрытий признан швейцарский изобретатель доктор Макс Ульрих Шооп, который в 1913 году разработал газопламенный проволочный распылитель.

Источником тепла при данном способе напыления выступает ацетиленокислородное пламя, температура которого не превышает 3000 °С. В последнее время все шире стали применять заменители ацетилена: пропан, этилен, метан, водород. Газопламенный метод характеризуется относительной простотой применяемого оборудования, требует лишь наличия ацетилена и кислорода. Распыляемый материал, попадая в факел ацетиленокислородного пламени горелок, разогревается до температуры, близкой к температуре плавления,и разгоняется до скорости 20…30 м/с. При соударении с изделием разогретые частицы соединяются с поверхностью и между собой, образуя достаточно плотное и равномерное покрытие.

С помощью газопламенного метода можно проводить напыление полимерных материалов (пластмассы), металлических материалов (алюминий, бронза, баббит, никель и т. д.), а также тугоплавких керамических соединений (окись титана, окись алюминия и др.).

Достоинства газопламенного напыления

    1. Напылением можно наносить различные покрытия на изделия из самых разнообразных материалов.
    2. Равномерное покрытие можно напылить как на большую площадь, так и на ограниченные участки больших изделий, тогда как нанесение покрытий погружением в расплав, электролитическое осаждение, диффузионное насыщение и другие методы могут быть использованы в основном для деталей, размеры которых не превышают рабочих объемов используемых для этих целей ванн или нагревательных устройств.
    3. Напыление является наиболее удобным и высокоэкономичным методом в случаях, когда необходимо нанести покрытие на часть большого изделия.
    4. Напыление является наиболее эффективным способом в случаях, когда необходимо увеличить размеры детали на толщину не более 0,5…1 мм (восстановление и ремонт изношенных деталей).
    5. Оборудование, на котором производят напыление, сравнительно простое и легкое и его можно достаточно быстро перемещать. Для газопламенного напыления достаточно иметь компрессор, который можно также использовать для предварительной пескоструйной обработки поверхности основы, горелку для напыления и баллоны с газами.
    6. Для напыления можно использовать различные металлы и сплавы, а также большое число соединений и их смеси. Можно напылять различные материалы в несколько слоев, что позволяет получать покрытия со специальными характеристиками.
    7. Основа, на которую производится напыление, мало деформируется, тогда как при других методах нанесения покрытий необходимо нагревать до высокой температуры всю деталь или большую ее часть, что часто приводит к ее деформации.
    8. Напыление можно использовать для изготовления деталей различной формы. В этом случае напыление производят на поверхность оправки, которую после окончания процесса удаляют: остается оболочка из напыленного материала.
    9. Технологический процесс напыления обеспечивает высокую производительность нанесения покрытия и характеризуется относительно небольшой трудоемкостью.

Недостатки

  1. При нанесении покрытий на небольшие детали процесс напыления является неэкономичным из-за больших потерь напыляемого материала.
  2. Для предварительной подготовки поверхности основы перед напылением широко применяют пескои дробеструйную обработку кварцевым песком, корундом, стальной крошкой и другими материалами, которые загрязняют рабочий участок и ухудшают условия работы операторов, обслуживающих установку.
  3. В процессе напыления частицы напыляемого материала могут разлетаться, а также образовывать различные соединения с воздухом, что вредно для здоровья работающих.

Газопламенное напыление в зависимости от состояния напыляемого материала может быть трех типов: проволочное, прутковое и порошковое. Кроме того, к газопламенному методу относится детонационное напыление, основанное на использовании энергии детонации смеси «кислород – горючий газ».

1. Проволочное и прутковое напыление

В обоих случаях напыляемый материал в виде проволоки или прутка подается через центральное отверстие горелки и расплавляется в пламени. Струя сжатого воздуха распыляет расплавленный материал на мелкие частицы, которые осаждаются на обрабатываемой поверхности. Подача проволоки производится с постоянной скоростью роликами, приводимыми в движение встроенной в горелку воздушной турбиной, работающей на сжатом воздухе, используемом для напыления, или электродвигателем через редукционный механизм. При этом необходима точная регулировка скорости вращения турбины или электродвигателя.

При использовании воздушной турбины трудно производить точную регулировку скорости подачи проволоки, однако в этом случае горелка более компактна и имеет меньшие габариты. Поэтому воздушные турбины используют в горелках, которые предназначены для ручного напыления. Горелки с электрическим двигателем позволяют более точно регулировать подачу проволоки и поддерживать ее постоянную скорость. Однако такие горелки имеют значительную массу, поэтому их устанавливают в механизированных установках для напыления. Диаметр напыляемой проволоки обычно не превышает 3 мм. При напылении металлов с низкими температурами плавления (алюминий, цинк и т. д.) горелками с повышенной производительностью диаметр проволоки может составлять 5…7 мм.

Для распыления металлических проволок диаметром от 1,5 до 4,0 мм и гибких шнуровых материалов диаметром от 3,0 до 5,0 мм применяется многофункциональная установка газопламенного напыления «Техникорд ТОП-ЖЕТ/2» (рис. 1). С ее помощью можно наносить покрытия для защиты поверхности деталей от различных видов изнашивания, кавитации, коррозионного воздействия различных сред, а также ремонта изношенных деталей с одновременным улучшением эксплуатационных свойств поверхности.

Установка газопламенного напыления

Рис. 1. Установка газопламенного напыления «Техникорд ТОП-ЖЕТ/2»: 1 – стойка; 2 – катушка с проволокой; 3 – блок подготовки воздуха; 4 – пульт управления газами; 5 – горелка «ТОП-ЖЕТ/2»; 6 – шланги

Установка включает пистолет-распылитель «ТОП-ЖЕТ/2», пульт управления рабочими газами, смонтированный на стойке. На стойке предусмотрены крепления для установки двух стандартных катушек с проволокой или шнуровым материалом. Пистолет-распылитель соединяется с пультом управления рабочими газами резинотканевыми рукавами с быстросъемными разъемами для кислорода, горючего газа и сжатого воздуха. Кислород и горючий газ подаются по рукавам на пульт управления от стандартных газовых баллонов, оснащенных редукторами. Сжатый воздух, подаваемый от компрессора, предварительно очищается от следов масла и влаги, после чего поступает по рукаву на вход блока подготовки воздуха и через пульт управления рабочими газами подается в горелку.

2. Напыление порошкового материала

Напыляемый порошок поступает в горелку сверху из бункера через отверстие, разгоняется потоком транспортирующего газа (смесь «кислород – горючий газ») и на выходе из сопла попадает в пламя, где происходит его нагревание. Увлекаемые струей горячего газа частицы порошка попадают на напыляемую поверхность. В порошковых горелках, как и в проволочных, подача напыляемого материала в пламя и разгон образующихся расплавленных частиц может производиться при помощи струи сжатого воздуха.

В большинстве случаев в качестве горючего газа используют ацетилен. Можно также применять пропан, водород. Для напыления пластмасс чаще применяют пропан.

К агрегатам, в которых напыляемый материал подают в виде порошка, относят газопламенную горелку типа Rototec-80 швейцарской фирмы Castolin-Eutectic (рис. 2).

Газопламенная горелка Rototec-80

Рис. 2. Газопламенная горелка Rototec-80

Напыляемый материал с размером частиц до 100 мкм засыпают в специальную ёмкость конусообразной формы. Конструктивно газопламенная горелка выполнена таким образом, что при её работе ёмкость с порошком находится в верхней части от газового канала. Поэтому, кроме инжекции, значительную роль в равномерной подаче порошка в область нагрева играет сила гравитации. Горелка выполнена в переносном варианте. Габариты кейса 50030080 мм. При распылении порошковых материалов с различными теплофизическими свойствами у горелок предусмотрено регулирование рабочей смеси газов, что позволяет получать качественные покрытия как из тугоплавких (Al2O3 и TiO2), так и легкоплавких (бронза, баббит) материалов.

С помощью этой горелки можно осуществлять восстановление геометрических размеров посадочных мест крупногабаритных валов под подшипники качения и скольжения, коренных и шатунных шеек коленчатых валов ДВС, дизельных машин и компрессорных установок.

3. Технология газопламенного напыления

Технология проволочного газопламенного напыления, которую наиболее широко используют в промышленности, должна отвечать следующим требованиям.

Сжатый воздух, используемый для распыления расплавленной проволоки, должен быть сухим и не содержать масла. Давление сжатого воздуха должно быть не менее 0,4 МПа (4 физических атмосферы).

Перед напылением необходимо тщательно осмотреть поверхность. Если в результате осмотра установлено, что на ней имеются следы влаги, окисная пленка, окалина и другие загрязнения, необходима вторичная обдувка абразивными материалами. Первый слой покрытия напыляют в течение 4 часов после обдувки. Окончательное напыление покрытия до требуемой толщины должно быть проведено не более чем через 8 часов после предварительной обработки.

Зажигать горелку и выводить ее на рабочий режим необходимо вдали от напыляемой поверхности. Расстояние от горелки до поверхности детали обычно составляет 75…250 мм. Выбор величины этого расстояния зависит от напыляемого материала и диаметра проволоки, а также от свойств напыляемого покрытия. При очень малом расстоянии может возникнуть опасность коробления основы под действием термических напряжений. Когда же расстояние слишком большое, температура летящих частиц снижается, что приводит к образованию рыхлого покрытия и уменьшению прочности сцепления с основой, что может вызвать отделение покрытия от основы.

При порошковом напылении керамики расстояние от среза сопла горелки до основы составляет 150…200 мм, а в случае напыления пруткового материала это расстояние около 75 мм.

Наибольшая деформация напыляемых частиц при соударении с поверхностью основы происходит, если горелка установлена относительно нее под углом 90°. Когда невозможно обеспечить этот угол, покрытие получается с несколько худшими характеристиками. Допустимый угол наклона горелки, при котором можно наносить покрытие, составляет не менее 45°.

При напылении режим работы горелки, скорость перемещения и расстояние напыления должны поддерживаться постоянными. Обычно скорость перемещения горелки или основы при напылении на плоские поверхности составляет от 10 до 25 м/мин, а шаг перемещения горелки – 6…12 мм.

В случае перегрева поверхности основы при напылении происходит снижение прочности сцепления покрытия. Как правило, температура поверхности напыляемой детали не должна превышать 260 °С. Для контроля температуры основы можно воспользоваться, например, термопарами, термокарандашами или термокрасками, которые наносят на деталь в непосредственной близости от места напыления. Для предотвращения перегрева при напылении обрабатываемую основу можно охлаждать воздухом.

При температуре напыляемой поверхности, близкой к 0 °С и ниже, проводить напыление не рекомендуется, так как покрытие может отслоиться. Для того чтобы покрытие не растрескалось, необходимо предварительно нагреть основу до температуры 100…120 °С. От способа предварительной обработки основы в значительной степени зависит толщина наносимого покрытия. Нарезка резьбы на напыляемой поверхности позволяет наносить более толстые покрытия по сравнению с подготовкой поверхности обдувкой абразивными материалами.

При механическом перемещении напыляемого изделия или горелки процесс напыления принимает более устойчивый характер и покрытие можно получить более однородным. Для напыления на валы часто используют токарные станки. Обычно в этих случаях горелку устанавливают на суппорте. После напыления на этом же станке, не вынимая детали, можно произвести ее обточку или шлифование. При напылении покрытий на большие партии изделий процесс напыления желательно автоматизировать.

Покрытие, полученное после напыления, по своей структуре является в значительной степени пористым. Пористость его можно в некоторых случаях эффективно использовать. Заполнять поры можно путем нанесения на покрытие слоя краски, пропиткой покрытия специальными составами или проплавлением его, если оно получено из самофлюсующихся сплавов. Для улучшения механических свойств и термостойкости покрытия его можно подвергнуть также термической обработке. Однако наиболее широкое применение находят плотные покрытия.

4. Высокоскоростное газопламенное напыление (HVOF «High Velocity Oxygen Fuel Spraying»)

Высокоскоростное газопламенное напыление по праву считается наиболее современной из технологий напыления. В странах Европы и Северной Америки высокоскоростное напыление практически вытеснило гальванику и методы вакуумного напыления во многих отраслях. Твердосплавные покрытия, нанесенные методами высокоскоростного напыления, по всем статьям превосходят гальванические покрытия, процесс создания которых признан чрезвычайно канцерогенным.

В начале 80-х годов прошлого века появились установки высокоскоростного напыления, более простые по конструкции и основанные на классической схеме жидкостного реактивного двигателя, со скоростью газового потока более 2000 м/с.

Плотность покрытий достигает при этом 99 %. В качестве наносимого материала используют порошки карбидов, металлокарбидов, сплавов на основе Ni, Cu и др. Для увеличения скорости частиц увеличивают скорость истечения продуктов сгорания путем повышения давления в камере сгорания до 1,5 МПа, а в конструкцию горелки вводят сопло Лаваля. На рис. 3 представлена схема распылителя системы высокоскоростного напыления.

В результате порошкового напыления образуется надежное, долговечное покрытие, обладающее отличными эксплуатационными свойствами. В том числе устойчивостью к коррозии, истиранию, ударам и другим внешним воздействиям. Оно продлевает срок службы изделий на десятки лет. При этом стоимость такого защитного покрытия гораздо ниже, чем аналогичного гальванического.

Схема высокоскоростного напыления порошка

Рис. 3. Схема высокоскоростного напыления порошка: 1 – канал осевой подачи порошка; 2 – подача кислорода; 3 – подача топлива; 4 – канал радиальной подачи порошка; 5 – ствол горелки; 6 – сопло Лаваля; 7 – струя разогретого порошка; 8 – напыляемая поверхность

5. Сверхзвуковое газовоздушное напыление (СГН)

Для нанесения покрытий из порошков металлов и карбидов используется сверхзвуковая струя продуктов сгорания топливовоздушной смеси. В струе частицы распыляемого материала диаметром 10…45 мкм разгоняются до 800 м/с, нагреваясь при этом ниже температуры плавления. Покрытия отличаются практически беспористой структурой, низким содержанием кислорода и высокой, до 150 МПа, адгезионной прочностью. По производительности СГН в несколько раз превосходит процессы напыления аналогичного качества (HVOF «High Velocity Oxygen Fuel Spraying»), детонационное, плазменное в динамическом вакууме, холодное газодинамическое напыление (ХГН).

Установка для СГН включает пистолет для напыления, панель управления, порошковый питатель и ряд вспомогательных устройств (рис. 4).Панель управления с сенсорным экраном обеспечивает дистанционную настройку, регулирование и стабильность параметров процесса (расход газов, порошка, зажигание и выключение горения, безопасность). Вспомогательные устройства – подогреватель газа и испаритель – предназначены для поддержания постоянного давления горючего газа на выходе из баллона.

Установка для сверхзвукового газовоздушного напыления порошков

Рис. 4. Установка для сверхзвукового газовоздушного напыления порошков

Значения скоростей и температур частиц при СГН занимают промежуточное положение между параметрами HVOF и ХГН, причем температура частиц ниже точки плавления сплавов на основе Co, Fe, Ni. Это позволяет избежать повышенного в сравнении с HVOF окисления частиц и избыточного тепловложения в покрытие. Кроме того, такое сочетание скоростей и температур частиц позволяет совместить в СГН высокое качество покрытий и производительность. Покрытия отличаются практически нулевой пористостью, аналогично значениям при плазменном напылении в вакууме, производительность в 10 раз выше, а затраты по нанесению 1 кг покрытия в 8…10 раз ниже, чем при HVOF.

Применение

Широкий набор распыляемых материалов, высокие производительность и характеристики покрытий позволяют эффективно использовать СГН-процесс для нанесения антикоррозионных и износостойких покрытий в различных сферах. Такие покрытия успешно заменяют электролитический хром, устойчивы к высокотемпературной коррозии в агрессивных средах, используются в авиации и энергетике для паровых и газовых турбин, эффективно работают в условиях интенсивного абразивного изнашивания.

6. Нанесение детонационных покрытий

Метод детонационного нанесения покрытий основан на высокоскоростном ударном взаимодействии нагретых до высоких температур частиц порошка напыленного материала с подложкой (рис. 5).

Рис. 5. Схема детонационной установки с внутренним смесеобразованием: 1 – клапан подачи ацетилена; 2 –клапан подачи азота; 3 – канал подачи порошка; 4 – свеча зажигания; 5 – ствол пушки; 6 – клапан подачи кислорода; 7 – мишень

Детонационная установка с внутренними смесеобразователями представляет собой водоохлаждаемый ствол длиной 1…1,8 м с внутренним диаметром от 10 до 40 мм. В ствол подается смесь кислорода и ацетилена вместе с порцией порошка. Взрываемая газовая смесь воспламеняется при помощи электрического импульса, и детонационная волна перемещается по стволу, ускоряя и нагревая порошок. Частицы порошка ускоряются до скорости 500…1000 м/с и ударяются в деталь, образуя пятно напыленного покрытия. Затем ствол очищается азотом, и процесс повторяется. Процесс напыления осуществляется циклически (4…10 циклов в секунду). Детонационные покрытия обеспечивают повышение эксплуатационных свойств и ресурса работы узлов, машин и механизмов, восстанавливают изношенные детали (до 1 мм на сторону).

Материалы покрытий:

  • металлы и их оксиды, карбиды, бориды, нитриды;
  • твердые сплавы;
  • композитные порошки.

Комплекс детонационного напыления «ГРОМ-3М»

Комплекс «ГРОМ-3М» предназначен для восстановления дорогостоящих и дефицитных деталей машин, механизмов, работающих в условиях интенсивного износа (рис. 6).

Рис. 6. Комплекс детонационного напыления «Гром-3М»: 1 – стойка для установки пушки; 2 – напыляемая деталь (коленвал); 3 – трехствольная пушка с порошковым питателем

В состав оборудования входят:

  • пушка детонационная;
  • защитная звукоизолированная камера;
  • манипулятор для перемещения деталей;
  • стойка управления.

Комплекс «ГРОМ-3М» позволяет:

  • восстанавливать изношенные поверхности коренных и шатунных шеек коленчатых валов двигателей внутреннего сгорания, а также любых тел вращения;
  • наносить износостойкие покрытия с заданными свойствами;
  • существенно повысить эксплуатационный ресурс восстановленных деталей;
  • в 2…3 раза снизить затраты при ремонте оборудования за счет отказа от приобретения новых узлов и деталей машин и механизмов.

Технические характеристики

  • Габаритные размеры напыляемых деталей:
    • длина, мм 1700
    • диаметр, мм 500
  • Масса напыляемых деталей, кг не более 350
  • Вертикальное перемещение пушки, мм 1900
  • Скорость перемещения пушки, м/с 5…50
  • Скорость вращения напыляемой детали, об./мин 1…75
  • Скорострельность пушки, цикл/с 17
  • Количество стволов, шт. 3
  • Толщина наносимого слоя, мм 0,01…3
  • Адгезия, кг/мм2 10…30
  • Твердость наносимых слоев, ед. НRC до 65
  • Рабочие газы:

«топливо» – пропан-бутан

«окислитель» – кислород

«продувка» – воздух

  • Напряжение питания, В 3×380
  • Потребляемая электрическая мощность, кВт не более 1