Содержание страницы
К антифрикционным относят материалы, которые идут на изготовление различных деталей, работающих в условиях трения скольжения (рис. 1). В судовом машиностроении из этих деталей конструируются кинематические узлы с вращательным или качательным движением. Антифрикционный материал должен обладать низким коэффициентом трения в кинематическом узле, хорошей прирабатываемостью, высокой износостойкостью, малой склонностью к заеданию (схватыванию), способностью обеспечить равномерную смазку. Перечисленные свойства антифрикционного материала должны им обеспечиваться при определенных удельных контактных нагрузках и различных конструктивных решениях узлов трения (рис. 2).
- канал подачи смазочного материала;
- вкладыш;
- корпус;
- зазор, заполненный смазочным материалом;
- цапфа вала
Рис. 1. Типовая конструкция подшипника скольжения
Большое разнообразие конструктивных типов узлов трения, а также условий эксплуатации привело к необходимости создания самых разнообразных антифрикционных материалов. Различают следующие антифрикционные материалы:
- сплавы на основе олова, свинца (баббиты),
- меди (бронзы), железа (серый чугун),
- металлокерамические (бронзографит, железографит),
- пластмассы (текстолит, фторопласт-4, древесноложные пластики и др.),
- а также сложные композиции типа “металл–пластмасса”.
Рис. 2. Различные конструктивные узлы трения
По структурному признаку металлические антифрикционные материалы делят на две группы:
- первая – материалы с мягкой основой и твердыми включениями и
- вторая – материалы с твердой основой и мягкими включениями.
В современном судовом машиностроении используются подшипниковые сплавы на основе олова и свинца, сплавы на медной основе: латуни и бронзы. Для обеспечения, указанного выше комплекса, часто противоречивых свойств, могут использоваться сплавы, состоящие из относительно мягкой основы, в которой распределена достаточно твердая вторая фаза.
Назначение твердых кристаллов – осуществлять непосредственный контакт с вращающимся валом, назначение пластичной основы – обеспечивать прирабатываемость вкладыша к валу (рис. 3). Количество твердой составляющей должно быть небольшим, чтобы твердые и хрупкие кристаллы не соприкасались между собой. Кроме того, они должны быть равномерно распределены в пластичной основе. Подобную структуру имеют баббиты.
Рис. 3. Схема «вал – вкладыш»
1. Баббиты
Баббитами называют антифрикционные сплавы на основе олова или свинца. Баббиты обладают низкой твердостью (HB130 – 320МПа), имеют невысокую температуру плавления (240 – 320 °С), повышенную размягчаемость (НВ90 – 240 МПа при 100 °С), отлично прирабатываются и обладают высокими антифрикционными свойствами. В то же время они обладают низким сопротивлением усталости, что влияет на работоспособность подшипников.
В России баббиты, используемые в судостроении, стандартизованы (табл.1).
Табл.1. Химический состав баббитов (ГОСТ 1320–74).
Литейные сплавы на основе свинца, и олова для многослойных подшипников регламентированы международным стандартом. К ним относятся сплавы на основе свинца: PbSb15SnAs; PbSb15Sn10; PbSb14Sn9CuAs; PbSb10Sn6 и олова SnSbl2Cu6Pb; SnSb8Cu4; SnSb8Cu4Cd. Баббит Б83 – сплав на основе олова, содержащий 83% Sn, 11% Sb и 6% Си. Если бы сплав не содержал меди, то согласно диаграмме состояния Sn – Sb его структура должна бы состоять из двух составляющих: светлых граненых первичных кристаллов β – фазы (твердые включения) и темных α – кристаллов раствора на базе олова (мягкая составляющая). Границы зерен в α – фазе обычно не вытравливаются, поэтому под микроскопом она выглядит как сплошной черный фон. Промежуточную фазу можно рассматривать как твердый раствор на основе соединения SnSb. Медь, введенная в сплав Б83 для предотвращения ликвации по плотности, образует с оловом интерметаллиды Cu3Sn (твердая составляющая), звездчатые кристаллы которого, выделяясь в первую очередь из расплава, образуют как бы каркас, препятствующий всплытию более легких β – кристаллов. Таким образом, структура баббита Б83 состоит из трех фаз – α, β (SnSb) и g (Cu3Sn.) (рис. 4).
Рис. 4. Микроструктура баббита Б83 (Справа — схематическое изображение микроструктуры)
Оловянные баббиты являются лучшими подшипниковыми сплавами и применяются для заливки наиболее ответственных подшипников паровых турбин, компрессоров, дизелей и других высоконагруженных установок, работающих со смазкой при высоких скоростях скольжения.
Баббит Б16, разработанный А.М.Бочваром (рис. 5), – сплав на свинцовой основе. Он содержит 16% Sn, 16% Sb, 2%Cu. Медь введена для предотвращения ликвации по плотности. В сплаве Б16 первично выделяются кристаллы соединения Cu6Sn5, затем двойная эвтектика β +Cu6Sn5 и тройная эвтектика α +β +Cu6Sn5.
Рис. 5. Микроструктура баббита Б16 (Справа — схематическое изображение микроструктуры)
Фаза β – это твердый раствор на соединения SnSb содержащий значительное количество свинца, β – фаза – твердый раствор олова и сурьмы в свинце. Твердыми включениями в этом баббите являются β – фаза (белые граненые кристаллы) и интерметаллиды g (Cu6Sn5) – (звездчатые кристаллы). Пластичная основа – эвтектическая смесь (β + g), в которой β – фаза светлая, g – фаза темная. Пестрая структурная составляющая с ярко выраженным эвтектическим строением резко отличает микроструктуру сплава Б16 от микроструктуры баббита Б83.
Баббит Б16 применяют как заменитель баббита Б83 для вкладышей подшипников, электродвигателей, паровых турбин, не испытывающих ударных нагрузок. По сравнению с оловянными баббитами свинцовые обладают большим коэффициентом трения. Они более хрупки, так как в них мягкой составляющей является достаточно хрупкая эвтектика.
2. Антифрикционные сплавы на основе меди
В качестве антифрикционных сплавов употребляют бронзы (оловянные и безоловянные) и латуни. Подшипники изготавливают из бронзы в монометаллическом и биметаллическом исполнении (рис. 6). Для монометаллических подшипников используют оловянистые бронзы.
Для биметаллических подшипников в качестве антифрикционного слоя употребляются бронзы, содержащие повышенное количество свинца без олова (БрС30) или с 1% Sn.
В отличие от баббитов, бронза БрС30 относится к антифрикционным материалам с твердой матрицей (Си) и мягкими включениями (Pb). При граничном трении на поверхность вала переносится тонкая пленка свинца, защищающая шейку стального вала от повреждения. Эта бронза отличается высокой теплопроводностью (в четыре раза большей, чем у остальных бронз) и хорошим сопротивлением усталости. На рис. 52 изображена микроструктура БрС30.
Рис. 6. Схемы исполнения биметаллических и триметаллических подшипников
Биметаллические подшипники имеют стальное основание обеспечивающее жесткость и натяг в тяжелых условиях повышенной температуры и циклических нагрузок.
Второй слой материала состоит из антифрикционного сплава. Его толщина относительно велика – она составляет около 0.3 мм. Толщина антифрикционного слоя является важной характеристикой биметаллических подшипников, которые способны прирабатываться и приспосабливаться к относительно большим геометрическим дефектам. Биметаллический подшипник также обладает хорошей абсорбционной способностью, поглощая как мелкие, так и крупные включения в масле.
Обычно рабочий слой сделан из алюминия, содержащего 6 – 20% олова в качестве твердого смазочного материала, обеспечивающего антифрикционные свойства. Кроме этого, сплав часто содержит 2 – 4% кремния в виде мелких включений, распределенных в алюминии. Твердый кремний упрочняет сплав и также обладает способностью полировать поверхность вала. Присутствие кремния особенно важно при работе с валами из ковкого чугуна. Алюминиевый сплав может быть дополнительно упрочнен небольшими добавками меди, никеля, марганца, ванадия и других элементов.
Рис. 7. Микроструктура бронзы БрС30 (Справа — схематическое изображение микроструктуры)
3. Антифрикционные сплавы на основе железа
Стали. В качестве антифрикционных материалов стали используют в очень легких условиях работы при небольших давлениях и невысоких скоростях скольжения. Будучи твердыми и имея высокую температуру плавления, стали плохо прирабатываются, сравнительно легко схватываются с сопряженной поверхностью цапфы и образуют задиры. Обычно используют так называемые медистые стали, содержащие малое количество углерода, либо графитизированные стали, имеющие включения свободного графита. В таблице 2 приложения приведен состав сталей, рекомендуемых к использованию взамен бронз в легких условиях работы.
Табл.2. Состав (в %) антифрикционных сталей Антифрикционный чугун.
Ряд чугунов имеет высокие антифрикционные свойства, которые определяются в значительной степени строением графитовой составляющей. Чугун с глобоидальной формой графита и с толстыми пластинками более износостоек, чем чугун с тонкими пластинками. В структуре антифрикционного чугуна желательно иметь минимальное количество свободного феррита (не более 15%) и должен отсутствовать свободный цементит.
Включения графита в чугунах выполняют роль мягкой составляющей. К их недостаткам следует отнести плохую прирабатываемость, чувствительность к недостатку смазки, пониженную стойкость к воздействию ударной нагрузки.
Рис. 8. Структуры антифрикционных чугунов с глобоидальной и шаровидной формой графита на перлитной основе
4. Назначение антифрикционного чугуна
Таблица 4.
Марка чугуна | Назначение |
АЧС-1 | Для работы в паре с закаленным или нормализованным валом |
АЧС-2 | То же |
АЧС-3 | Для работы в паре с закаленным или нормализованным валом, или валом, не подвергающимся термической обработке |
АЧС-4 | Для работы в паре с закаленным или нормализованным валом |
АЧС-5 | Для работы в особо нагруженных узлах трения в паре с закаленным или нормализованным валом |
АЧС-6 | Для работы в узлах трения при температуре до 300 °С в паре с валом, не подвергающимся термической обработке |
АЧВ-1 | Для работы в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом |
АЧВ-2 | Для работы в условиях трения с повышенными окружными скоростями в паре с валом, не подвергающимся термической обработке |
АЧК-1 | Для работы в паре с закаленным или нормализованным валом |
АЧК-2 | Для работы в паре с валом, не подвергающимся термической обработке |
5. Антифрикционные сплавы на основе алюминия
Алюминиевые сплавы в последнее время все шире используются для замены антифрикционных сплавов на свинцовой и оловянной основе, а также свинцовистой бронзы. Их классифицируют по микроструктурному признаку. Первая группа – сплавы, имеющие твердые структурные составляющие (FeAl3; Al3Ni; CuAl2; Mg2Si и др.) в пластичной основе металла. Они применяются при высоких скоростях вращения и невысоких нагрузках с применением смазки. Однако, если подача смазки прекращается, то наступает схватывание. Свободны от этого недостатка сплавы второй группы, они легированы оловом. В случае прекращения поступления смазки олово расплавляется, покрывая вал тонким слоем и тем самым препятствуя контакту железа с алюминием и, следовательно, схватыванию. В таблице 5 приведены современные антифрикционные сплавы. Медь вводят для упрочнения матрицы, кремний, железо, никель и др. для уменьшения износа (образуют твердые частицы).
Таблица 5.
Группа | Сплав | Ni | Mg | Sb | Cu | Si | Sn | Ti |
I
II |
АН-2,5 АСМ АО9-1 АО3-1 АО9-2 АО20-1 |
2,7
– 3,3 – – 0,4 1,0 – |
–
0,3 – 0,7 – – – – |
3,5
3,5 – 6,5 – – – – |
–
– 1,0 1,0 2,25 1,0 |
–
– – 1,85 0,5 – |
–
– 9,0 3,0 9,0 20,0 |
0,02
– 0,1 |
Заключение
Конструкционные материалы постепенно занимает все большее место в нашей жизни. Уже достаточно трудно представить современное судостроение без конструкционных материалов. Области применения конструкционных материалов многочисленны: авиационно-космическая, ракетная, энергетическое турбостроение, в автомобильной и горнорудной, металлургической промышленности, в строительстве и т.д. Диапазон применения этих материалов увеличивается день ото дня и сулит еще много интересного. Можно с уверенностью сказать, что это материалы будущего.