Содержание страницы
- 1. Стали углеродистые обыкновенного качества
- 2. Стали углеродистые качественные конструкционные
- 3. Влияние легирующих элементов. Маркировка легированных сталей
- 4. Цементуемые, улучшаемые и высокопрочные стали
- 5. Углеродистые инструментальные стали
- 6. Легированные инструментальные стали
- 7. Коррозионно-стойкие стали
- 8. Жаростойкие и жаропрочные стали
- 9. Магнитные и магнитно-мягкие стали и сплавы
- 10. Износостойкие стали
- 11. Методы получения высококачественной стали
1. Стали углеродистые обыкновенного качества
Углеродистые стали подразделяют на три основные группы: углеродистые стали обыкновенного качества, качественные углеродистые стали и углеродистые стали специального назначения (автоматная, котельная и др.).
Стали углеродистые обыкновенного качества соответствуют ГОСТ 380–2005. Их поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях народного хозяйства.
Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6.
Цифры — это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.
В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В. Индексы справа от номера марки означают:
- кп — кипящая;
- пс — полуспокойная;
- сп — спокойная.
Между индексом и номером марки может стоять буква Г, это означает повышенное содержание марганца. Вобозначениях марок слева от букв Ст указаны группы (Б и В) стали. Стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой правее индекса степени раскисления. Например, Ст5Гпс3 означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспокойная, третьей категории. Сталь первой категории пишется без указания номера последней, например Ст4пс.
Химический состав сталей группы А не регламентируют, а гарантируют их механические свойства, определяемые соответствующим государственным стандартом. Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).
Сталь группы Б поставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют. Сталь группы Б поставляют по механическим свойствам, соответствующим нормам для стали группы А, и по химическому составу, соответствующему нормам для стали группы Б. Сталь группы Б используют, в основном, для сварных конструкций.
2. Стали углеродистые качественные конструкционные
Стали углеродистые качественные конструкционные соответствуют ГОСТ 1050–88. От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и в большинстве случаев — более высоким содержанием кремния и марганца.
Сталь маркируют двузначными числами, которые обозначают содержание углерода в сотых долях процента, и поставляют с гарантированными показателями химического состава и механических свойств. Буква Г в марках этих сталей также указывает на повышенное содержание марганца (до 1%). Сталь углеродистую качественную поставляют катаной, кованой, калиброванной, круглой с особой отделкой поверхности (серебрянка). К сталям углеродистым специального назначения относят стали (ГОСТ 1414–75) с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены, в основном, для изготовления деталей массового производства.
Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают также введением в стали технологических добавок — селена, свинца, теллура. Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют следующие марки автоматной стали: А12, А20, А30, А40Г. Из стали А12 изготовляют неответственные детали, из сталей других марок — более ответственные детали, работающие при значительных напряжениях и повышенных давлениях. Сортамент автоматной стали предусматривает изготовление сортового проката в виде прутков круглого, квадратного и шестигранного сечений.
Стали листовые (котельные, ГОСТ 5520–79 и ТУ) для котлов и сосудов, работающих под давлением, применяют для изготовления паровых котлов, судовых топок, камер горения газовых турбин и других деталей. Они должны работать при переменных давлениях и температуре до 450°С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродистую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали: 12К, 15К, 16К, 18К, 20К, 22К с содержанием в них углерода от 0,08 до 0,28%. Эти стали поставляют в виде листов толщиной до 200 мм и поковок в состоянии после нормализации и отпуска. Свойства и назначение качественных конструкционных сталей приведены в табл. 1.
3. Влияние легирующих элементов. Маркировка легированных сталей
Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.
Таблица 1. Механические свойства качественной конструкционной стали
Марка
стали |
Предел
прочности при растяжении σВ, МПа |
Относительное
удлинение δ,% |
Твердость,
НВ |
Назначение |
08 | 330 | 33 | 131 | Малонагруженные детали: шестерни, звездочки, ролики, оси, подвергающиеся цементации |
10 | 340 | 31 | 143 | |
15 | 380 | 27 | 149 | |
20 | 420 | 25 | 163 | |
25 | 460 | 23 | 170 | Средненагруженные детали: шестерни, валы, оси |
30 | 500 | 21 | 179 | |
35 | 540 | 20 | 207 | |
40 | 580 | 19 | 217 | Средненагруженные детали: шатуны, валы, шестерни, пальцы |
45 | 610 | 16 | 229 | |
50 | 640 | 14 | 241 | Высоконагруженные детали: шестерни, муфты, пружинные кольца, пружины |
55 | 660 | 13 | 255 | |
60 | 690 | 12 | 255 | Пружины, рессоры, эксцентрики и другие детали, работающие в условиях трения |
65 | 710 | 10 | 255 | |
70 | 730 | 9 | 269 | |
75 | 1100 | 7 | 285 | |
80 | 1100 | 6 | 285 | |
85 | 1150 | 6 | 302 | |
60Г | 710 | 11 | 269 | |
70Г | 800 | 8 | 285 |
Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие элементы упрочняют его.
Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель — элементы с решеткой, отличающейся от решетки -Fe. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают ударную вязкость (за исключением никеля). При содержании до 1% марганец и хром повышают ударную вязкость. Свыше этого содержания ударная вязкость снижается, достигая уровня нелегированного феррита при 3% Сr и 1,5% Мn.
Повышению конструктивной прочности при легировании стали способствует увеличение прокаливаемости. Улучшение прокаливаемости стали достигается при ее легировании несколькими элементами, например Сr + Мо, Cr + Ni, Cr + Ni + Mo и другими сочетаниями различных элементов.
Высокая конструктивная прочность стали обеспечивается рациональным содержанием в ней легирующих элементов. Избыточное легирование после достижения необходимой прокаливаемости приводит к снижению вязкости и облегчает разрушение стали.
Хром оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.
Никель — наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.
Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Никель заметно повышает предел текучести стали, но делает ее чувствительной к перегреву. Всвязи с этим для измельчения зерна одновременно с никелем в сталь вводят карбидообразующие элементы.
Кремний является некарбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.
Молибден и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2…0,4% и вольфрам в количестве 0,8…1,2% в комплексно легированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.
Ванадий и титан — сильные карбидообразущие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, титана, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных труднорастворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.
Бор вводят для увеличения прокаливаемости в очень небольших количествах (0,002…0,005%).
Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения (ГОСТ 4543–71):
- хром (X),
- никель (Н),
- марганец (Г),
- кремний (С),
- молибден (М),
- вольфрам (В),
- титан (Т),
- алюминий (Ю),
- ванадий (Ф),
- медь (Д),
- бор (Р),
- кобальт (К),
- ниобий (Б),
- цирконий (Ц).
Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится до 1,5%.
В качественных конструкционных легированных сталях две первые цифры марки показывают содержание углерода в сотых долях процента. Высококачественные легированные стали имеют в конце марки букву А, а особо высококачественные — Ш. Например, сталь марки 30ХГСН2А: высококачественная легированная сталь содержит 0,30% углерода, до 1% хрома, марганца, кремния и до 2% никеля; сталь марки 95Х18Ш: особо высококачественная, выплавленная методом электрошлакового переплава с вакуумированием, содержит 0,9…1,0% углерода; 17…19% хрома, 0,030% фосфора и 0,015% серы. Легированные конструкционные стали делят на цементуемые, улучшаемые и высокопрочные.
4. Цементуемые, улучшаемые и высокопрочные стали
Цементуемые стали — это низкоуглеродистые (до 0,25 С), низко- (до 2,5%) и среднелегированные (2,5…10% суммарное содержание легирующих элементов) стали. Они предназначены для деталей машин и приборов, работающих в условиях трения и испытывающих ударные и переменные нагрузки.
Стали марки 15ХА с пределом прочности σв МПа предназначены для изготовления небольших деталей, работающих в условиях трения при средних давлениях и скоростях. Для изготовления ответственных деталей, работающих при больших скоростях, высоких давлениях и ударных нагрузках, используется сталь марок 18ХГ и 25ХГМ. Для крупных, ответственных, тежелонагруженных деталей применяются стали 20ХН и 20Х2Н4А.
При изготовлении крупных, особо ответственных, тяжелонагруженных деталей, работающих при больших скоростях с наличием вибрационных и динамических нагрузок, используется сталь с пределом прочности в МПа марки 18Х2Н4МА.
Работоспособность таких деталей зависит от свойств сердцевины и поверхностного слоя металла. Цементуемые стали насыщают с поверхности углеродом (цементуют) и подвергают термической обработке (закалке и отпуску). Такая обработка обеспечивает высокую поверхностную твердость (HRC 58…63) и сохраняет требуемую вязкость и заданную прочность сердцевины металла.
Улучшаемые легированные стали — среднеуглеродистые (0,25…0,6% С) и низколегированные стали. Для обеспечения необходимых свойств (прочности, пластичности, вязкости) эти стали термически улучшают, подвергая закалке и высокому отпуску (при 500…600°С).
Улучшаемые и цементуемые стали после термической обработки дают прочность до σв МПа и вязкость до КС= 0,8…1,0 МДж/м2. Для создания новых современных машин такой прочности недостаточно. Необходимы стали с пределами прочности σв МПа. Для этих целей применяют комплексно легированные и мартенситостареющие стали. Свойства таких сталей и их назначение показаны в табл. 2.
Таблица 2. Улучшаемые легированные стали
Марка | Предел
прочности при растяжении σв, МПа |
Относительное
удлинение δ,% |
Удельная
вязкость КС, МДж/м2 |
Назначение |
40ХС | 1250 | 12 | 0,35 | Некоторые детали, работающие в условиях повышенных напряжений и знакопеременных нагрузок |
40ХФА | 900 | 10 | 0,9 | |
30ХГФА | 1100 | 10 | 0,5 | Детали, работающие в условиях трения, и ответственные сварные конструкции, работающие при знакопеременных нагрузках и температуре до 200°С |
40ХН2МА | 1100 | 12 | 0,8 | Крупные особо ответственные тяжелонагруженные детали сложной формы |
Комплексно легированные стали — это среднеуглеродистые (0,25…0,6% С) легированные стали, термоупрочняемые при низком отпуске или подвергающиеся термомеханической обработке.
Мартенситостареющие стали — это новый класс высокопрочных легированных сталей на основе безуглеродистых (не более 0,03% С) сплавов железа с никелем, кобальтом, молибденом, титаном, хромом и другими элементами. Мартенситостареющие стали закаливают на воздухе от 800…860°С с последующим старением при 450…500°С.
5. Углеродистые инструментальные стали
Инструментальные стали — это особая группа сталей, обладающих специфическими свойствами. Эти стали предназначены для изготовления режущего и измерительного инструмента, штампов.
По условиям работы инструмента к углеродистым инструментальным сталям предъявляют следующие требования:
- стали для режущего инструмента (резцы, сверла, метчики, фрезы и др.) должны обладать высокой твердостью, износостойкостью и теплостойкостью;
- стали для измерительного инструмента должны быть твердыми, износостойкими и длительное время сохранять размеры и форму инструмента;
- стали для штампов (холодного и горячего деформирования) должны иметь высокие механические свойства (твердость; износостойкость, вязкость), сохраняющиеся при повышенных температурах;
- стали для штампов горячего деформирования должны обладать устойчивостью против образования поверхностных трещин при многократном нагреве и охлаждении.
Инструментальные углеродистые стали (ГОСТ 1435–99) выпускают следующих марок: У7, У8, У8Г, У9, У10, У11, У12 и У13. Цифры указывают на содержание углерода в десятых долях процента. Буква Г, например У8Г, после цифры означает, что сталь имеет повышенное содержание марганца, что обеспечивает большую твердость сплава.
Марка инструментальной углеродистой стали высокого качества имеет букву А, например У12А: инструментальная углеродистая сталь высокого качества, содержащая 1,2% С. Инструменты, применение которых связано с ударной нагрузкой, например зубила, бородки, молотки, изготовляют из сталей У7А, У8А. Инструменты, требующие большой твердости, но не подвергающиеся ударам, например сверла, метчики, развертки, шаберы, напильники, изготовляют из сталей У12А, У13А. Стали У7—У9 подвергают полной, а стали У10— У13 — неполной закалке.
Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурах нагрева. При нагреве выше 200°С инструмент из углеродистых сталей теряет твердость, т.е. при повышенных температурах нужно применять инструменты из других сталей.
6. Легированные инструментальные стали
Легированные инструментальные стали имеют ГОСТ 5950– 2000. Легирующие элементы, вводимые в инструментальные стали, увеличивают теплостойкость (вольфрам, молибден, кобальт, хром), закаливаемость (марганец), вязкость (никель), износостойкость (вольфрам). По сравнению с углеродистыми легированные инструментальные стали имеют преимущества:
- хорошая прокаливаемость;
- большая пластичность в отожженном состоянии;
- значительная прочность в закаленном состоянии, более высокие режущие свойства.
Низколегированные инструментальные стали содержат до 2,5% легирующих элементов, имеют высокую твердость (HRC 62…69), значительную износостойкость, но малую теплостойкость (200…260°С). Их используют для изготовления инструмента более сложной формы. В низколегированных сталях X, 9ХС, ХВГ, ХВСГ основной легирующий элемент — хром. Сталь X легирована только хромом. Повышенное содержание хрома увеличивает ее прокаливаемость. Сталь X прокаливается в масле полностью в сечении до 25 мм, сталь У10 — только в сечении до 5 мм.
Применяют сталь X для изготовления токарных, строгальных и долбежных резцов. Сталь 9ХС, кроме хрома, легирована кремнием. По сравнению со сталью X она имеет большую прокаливаемость — до 35 мм; повышенную теплостойкость — до 250…260°С (сталь X — до 200…210°С) и лучшие режущие свойства. Из стали марки 9ХС изготовляют сверла, развертки, фрезы, метчики, плашки. Сталь ХВГ легирована хромом, вольфрамом и марганцем; имеет прокаливаемость на глубину до 45 мм. Сталь ХВГ используют для производства крупных и длинных протяжек, длинных метчиков, длинных разверток и т.п.
Сталь ХВСГ — сложнолегированная и по сравнению со сталями 9ХС и ХВГ лучше закаливается и прокаливается. При охлаждении в масле она прокаливается полностью в сечении до 80 мм. Она менее чувствительна к перегреву. Теплостойкость ее такая же, как у стали 9XС. ХВСГ применяют для изготовления круглых плашек, разверток, крупных протяжек и другого режущего инструмента.
Высоколегированные инструментальные стали содержат вольфрам, хром и ванадий в большом количестве (до 18% основного легирующего элемента); имеют высокую теплостойкость (600…640°С). Их используют для изготовления высокопроизводительного режущего инструмента, предназначенного для обработки высокопрочных сталей и других труднообрабатываемых материалов. Такие стали называют инструментальными быстрорежущими (ГОСТ 19265–73). Быстрорежущие стали обозначают буквой Р, цифра после которой указывают содержание вольфрама. Содержание хрома (4%) и ванадия (2%) в марках быстрорежущих сталей не указывают. В некоторые быстрорежущие стали дополнительно вводят молибден, кобальт и большое количество ванадия. Марки таких сталей содержат соответственно буквы М, К, Ф и цифры, указывающие их количество. Для изготовления измерительных инструментов применяют X, ХВГ и другие стали, химический состав которых приведен в ГОСТ 5950–2000.
Для измерительного инструмента большое значение имеет изменение размеров закаленного инструмента с течением времени. Поэтому при термической обработке измерительного инструмента внимание уделяется стабилизации напряженного состояния. Это достигается режимом низкого отпуска — при температуре 120…130°С в течение 15…20 ч и обработкой при температурах ниже нуля (до –60°С).
Штампы холодного деформирования небольших размеров (сечением 25…30 мм), простой формы, работающие в легких условиях, изготовляют из углеродистых сталей У10, УН, У12. Штампы сечением 75…100 мм более сложной формы и для более тяжелых условий работы изготовляют из сталей повышенной прокаливаемости X, ХВГ. Для изготовления инструмента с высокой твердостью и повышенной износостойкостью, а также с малой деформируемостью при закалке используют стали с высокой прокаливаемостью и износостойкостью, например высокохромистую сталь Х12Ф1 (11…12,5% Сr; 0,7…0,9% V).
Для инструмента, подвергающегося в работе большим ударным нагрузкам (такого как пневматические зубила, режущие ножи для ножниц холодной резки металла), применяют стали с меньшим содержанием углерода, повышенной вязкости — 4ХС, 6ХС, 4ХВ2С и др.
Молотовые штампы горячего деформирования изготовляют из сталей 5ХНМ, 5ХГМ, 5ХНВ. Эти стали содержат одинаковое количество (0,5…0,6%) углерода и легированы хромом. Такое содержание углерода позволяет получить достаточно высокую ударную вязкость; хром повышает прочность и увеличивает прокаливаемость сталей. Никель вводят в эти стали с целью повышения вязкости и улучшения прокаливаемости. Вольфрам и молибден повышают твердость и теплостойкость, уменьшают хрупкость, измельчают зерно и уменьшают склонность стали к перегреву. Марганец как более дешевый легирующий элемент является заменителем никеля. Для сталей молотовых штампов характерна глубокая прокаливаемость.
7. Коррозионно-стойкие стали
Коррозионно-стойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрессивных средах. Коррозионно-стойкие стали получают легированием низкои среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали.
Хромистые стали более дешевые, однако хромоникелевые обладают большей коррозионной стойкостью. Содержание хрома в нержавеющей стали должно быть не менее 12%. Наибольшая коррозионная стойкость сталей достигается после термической и механической обработки (табл. 3).
Таблица 3. Химический состав (%) некоторых нержавеющих сталей
Марка
(ГОСТ 5632–72) |
Класс | Элементы | Прочие элементы | ||
С | Cr | Ni | |||
12Х13 | Мартенситноферритный | 0,09…0,15 | 12…14 | – | – |
40Х13 | Мартенситный | 0,36…0,45 | 12…14 | – | – |
12Х17
08Х17Т |
Ферритный | 0,12
0,08 |
16…18
16…18 |
–
– |
– 5.С—0,8Ti |
12Х18Н9
12Х18Н9Т 04Х18Н10 10Х14Г14Н3 |
Аустенитный | 0,12
0,12 0,04 0,09…0,14 |
17…19
17…19 17…19 12,5…14 |
8…10
8…9,5 9…11 2,8…3,5 |
– 5.С—0,8Ti
– 13…15 Mn |
09Х15Н8Ю | Аустенитномартенситный | 0,09 | 14…16 | 7…9,4 | 0,7…1,3 Al |
08Х21Р6М2Т | Аустенитноферритный | 0,08 | 20…22 | 5,5…6,5 | 1,8…2,5Мо
0,2—0,4 Тi |
Для стали 12X13 лучшая коррозионная стойкость достигается после закалки в масле (при температуре 1000…1100°С), отпуска (при температуре 700…750°С) и полировки. Эта сталь устойчива в слабоагрессивных средах (воде, паре).
Сталь 40X13 применяют после закалки в масле с температурой 1000…1050°С и отпуска (180…200°С) со шлифованной и полированной поверхностью. После термической обработки эта сталь обладает высокой твердостью (HRC 52…55).
Более коррозионной стойкостью (в кислотных средах) обладает сталь 12X17. Для изготовления сварных конструкций эта сталь не рекомендуется в связи с тем, что при нагреве ее выше 900—950°С и быстрого охлаждения (при сварке) происходит обеднение периферийной зоны зерен хромом (ниже 12%). Это объясняется выделением карбидов хрома по границам зерен, что приводит к межкристаллитной коррозии.
Межкристаллитная коррозия — особый вид коррозионного разрушения металла по границам аустенитных зерен, когда электрохимический потенциал пограничных участков аустенитных зерен понижается вследствие обеднения хромом и при наличии коррозионной среды границы зерен становятся анодами. Для предотвращения этого вида коррозии применяют сталь, легированную титаном 08Х17Т. Сталь 08X17Т применяют для тех же целей, что и сталь 12Х17, а также для изготовления сварных конструкций.
Хромоникелевые стали содержат большое количество хрома и никеля, мало углерода и относятся к аустенитному классу.
Для получения однофазной структуры аустенита сталь (например, 12Х18Н9) закаливают в воде при температуре 1100…1150°С. При этом достигается наиболее высокая коррозионная стойкость при сравнительно невысокой прочности. Для повышения прочности сталь подвергают холодной пластической деформации и применяют в виде холоднокатаного листа и ленты для изготовления различных деталей.
Сталь 12Х18Н9 склонна, как и хромистая сталь ферритного класса, к межкристаллитной коррозии при нагреве. Причины возникновения межкристаллитной коррозии те же. Для предотвращения межкристаллитной коррозии сталь легируют титаном (например сталь 12Х18Н9Т) или снижают содержание углерода, как сталь 04XI8H10.
Хромоникелевые нержавеющие стали аустенитного класса имеют бо´льшую коррозионную стойкость, чем хромистые стали. Их широко применяют в химической, нефтяной и пищевой промышленности, в автомобилестроении, транспортном машиностроении, в строительстве. Для экономии дорогостоящего никеля его частично заменяют марганцем. Например, сталь 10Х14Г14Н3 рекомендуется как заменитель стали 12Х18Н9. Сталь аустенитно-мартенситного класса 09Х15Н8Ю применяют для тяжелонагруженных деталей.
Сталь аустенитно-ферритного класса 08X21Н6М2Т применяют для изготовления деталей и сварных конструкций, работающих в средах повышенной агрессивности — уксуснокислых, сернокислых, фосфорнокислых. Разработаны марки высоколегированных сталей на основе сложной системы Fe — Cr — Ni — Mo — Сu — С. Коррозионная стойкость хромоникельмолибденомедистых сталей в некоторых агрессивных средах очень велика, например в 80%-ных растворах серной кислоты. Такие стали широко используют в химической, пищевой, автомобильной и других отраслях промышленности.
8. Жаростойкие и жаропрочные стали
Взаимодействие металла с окружающей средой при повышении температуры вызывает газовую коррозию (окисление) и разрушение материала. Для изготовления деталей, работающих в условиях повышенной температуры (400…900°С) и окисления в газовой среде, применяют специальные жаростойкие стали.
Под жаростойкостью (или окалиностойкостью) понимают способность материала противостоять коррозионному разрушению при высоких температурах.
К жаростойким относят стали, содержащие алюминий, хром, кремний (табл. 4). Они не образуют окалины при высоких температурах. Например, хромистая сталь, содержащая 30% Сr, устойчива при температуре до 1200°С. Введение небольших добавок алюминия резко повышает жаростойкость хромистых сталей. Стойкость таких материалов при высоких температурах объясняется образованием на их поверхности плотных защитных пленок, состоящих из оксидов легирующих элементов (хрома, алюминия, кремния).
Таблица 4. Жаростойкие стали
Марка | Рабочая температура,°С | Назначение ГОСТ 5632–72 |
40Х9С2 | 850 | Клапаны двигателей внутреннего сгорания |
08Х17Т | 900 | Детали, работающие в среде топочных газов с повышенным содержанием серы |
36Х18Н25С2 | 1100 | Сопловые аппараты и жаровые трубы газотурбинных установок |
Область применения жаростойких сталей:
- изготовление различных деталей нагревательных устройств;
- изготовление энергетических установок.
Так, клапаны двигателей внутреннего сгорания изготавливают из стали 40Х9С2 с рабочей температурой не более 850°С, а сопловые аппараты и жаровые трубы газотурбинных установок — из стали 36Х18Н25С2 с максимальной рабочей температурой 1100°С.
Для изготовления деталей машин, длительное время работающих при больших нагрузках и высоких температурах (500…1000°С), применяют специальные жаропрочные стали.
Жаропрочность — способность материала выдерживать механические нагрузки без существенных деформаций при высоких температурах. К числу жаропрочных относят стали, содержащие хром, кремний, молибден, никель и др. Они сохраняют свои прочностные свойства при нагреве до 650°С и более (табл. 5). Из таких сталей изготовляют греющие элементы теплообменной аппаратуры, детали котлов, впускные и выпускные клапаны автомобильных и тракторных двигателей.
Таблица 5. Жаропрочные стали
Марка ГОСТ 5632–72 | Рабочая температура,°С | Назначение |
45Х14Н14В2М | 800—900 | Клапаны двигателей внутреннего сгорания большой мощности |
08Х16Н13М2Б | 600—700 | Лопатки газовых турбин |
9. Магнитные и магнитно-мягкие стали и сплавы
Магнитные стали и сплавы в зависимости от коэрцитивной силы и магнитной проницаемости делят на магнитно-твердые и магнитно-мягкие.
Магнитно-твердые стали и сплавы применяют для изготовления постоянных магнитов; они имеют большую коэрцитивную силу. Это высокоуглеродистые и легированные стали, специальные сплавы.
Углеродистые стали (У10—У12) после закалки имеют достаточную коэрцитивную силу (Нс = 5175 А/м), но так как они прокаливаются на небольшую глубину, их применяют для изготовления небольших магнитов.
Хромистые стали по сравнению с углеродистыми прокаливаются значительно глубже, поэтому из них изготовляют более крупные магниты. Магнитные свойства этих сталей такие же, как и углеродистых.
Хромокобальтовые стали (например, марки ЕХ5К5) имеют более высокую коэрцитивную силу Нс = 7166 А/м. Магнитные сплавы, например, ЮНДК24 (9% Аl, 13,5% Ni; 3% Сu; 24% Со; остальное — железо), имеют очень высокую коэрцитивную силу Нс = 39 810 А/м, поэтому из них изготовляют магниты небольшого размера, но большой мощности.
Магнитно-мягкие стали и сплавы имеют малую коэрцитивную силу и большую магнитную проницаемость. К ним относят электротехническое железо и сталь, железоникелевые сплавы (пермаллои).
Электротехническое железо (марок Э, ЭА, ЭАА) содержит менее 0,04% С, имеет высокую магнитную проницаемость μ = (2,78/3,58)·109 ГГн/м и применяется для сердечников, полюсных наконечников электромагнитов и др.
Электротехническая сталь содержит менее 0,05% С и кремний, сильно увеличивающий магнитную проницаемость. Электротехническую сталь по содержанию кремния делят на четыре группы: с 1% Si — марки Э11, Э12, Э13; с 2% Si — Э21, Э22; с 3% Si — Э31, Э32; с 4% Si — Э41—Э48. Вторая цифра (1—8) характеризует уровень электротехнических свойств.
Железоникелевые сплавы (пермаллои) содержат 45…80% Ni, их дополнительно легируют Сr, Si, Mo. Магнитная проницаемость этих сплавов очень высокая. Например, у пермаллоя марки 79НМ (79% Ni; 4% Mo) μ = 175,15·109 ГГн/м. Применяют пермаллои в аппаратуре, работающей в слабых электромагнитных полях (телефон, радио).
Ферриты — магнитно-мягкие материалы, получаемые спеканием смеси порошков ферромагнитной окиси железа Fe2O3 и окислов двухвалентных металлов (ZnO, NiO, MgO и др.). В отличие от других магнитно-мягких материалов у ферритов очень высокое удельное электросопротивление, что определяет их применение в устройствах, работающих в области высоких и сверхвысоких частот.
10. Износостойкие стали
Сплавы с высоким электрическим сопротивлением, с заданным коэффициентом теплового расширения и заданными упругими свойствами
Для изготовления деталей машин, работающих в условиях трения, применяют специальные износостойкие стали — шарикоподшипниковые, графитизированные и высокомарганцовистые.
Шарикоподшипниковые стали (ШХ6, ШХ9, ШХ15) применяют для изготовления шариков и роликов подшипников. По химическому составу (ГОСТ 801–78) и структуре эти стали относятся к классу инструментальных сталей. Они содержат около 1% Сu, 0,6…1,5% Сr.
Графитизированную сталь (высокоуглеродистую, содержащую 1,5…2% С и до 2% Сr) используют для изготовления поршневых колец, поршней, коленчатых валов и других фасонных отливок, работающих в условиях трения. Графитизированная сталь после закалки сочетает свойства закаленной стали и серого чугуна.
Высокомарганцовистую сталь Г13Л, содержащую 1,2% С и 13% Мn, применяют для изготовления железнодорожных крестовин, звеньев гусениц и т.п. Эта сталь обладает максимальной износостойкостью, когда имеет однофазную структуру аустенита, что обеспечивается закалкой (при температуре 1000…1100°С) при охлаждении на воздухе.
Сплавы с высоким электрическим сопротивлением применяют для изготовления электронагревателей и элементов сопротивлений и реостатов. Сплавы для электронагревателей обладают высокой жаростойкостью, высоким электрическим сопротивлением, удовлетворительной пластичностью в холодном состоянии. Этим требованиям отвечают железохромоалюминиевые сплавы, например, марок Х13Ю4 (≤ 0,15% С; 12…15% Сr; 3,5…5,5% А1), 0Х23Ю5 ≤ 0,05% С; 21,5…23,5% Сr; 4,6…5,3% А1); и никелевые сплавы, например, марок Х15Н60 — ферронихром, содержащий 25% Fe, X20H80 — нихром.
Сплавы с заданным коэффициентом теплового расширения содержат большое количество никеля. Сплав 36Н, называемый инваром (≤ 0,05% С и 35…37% Ni), почти не расширяется при температурах от –60 до +100°C. Его применяют для изготовления деталей приборов, требующих постоянных размеров в интервале климатических изменений температур. Сплав 29НК, называемый коваром (≤ 0,03% С; 28,5…29,5% Ni; 17…18% Со), имеет низкий коэффициент теплового расширения в интервале температур от –70 до +420°С.
К сплавам с заданными упругими свойствами относят сплав 40КХНМ (0,07…0,12% С; 15…17% Ni; 19…21% Сr; 6,4…7,4% Мо, 39…41% Со). Это высокопрочный с высокими упругими свойствами, немагнитный, коррозионно-стойкий в агрессивных средах сплав.
11. Методы получения высококачественной стали
К методам специальной металлургии относят обработку синтетическими шлаками, электрошлаковый переплав, вакуумно-индукционный способ, электронно-лучевой и плазменно-дуговой переплав.
Обработка синтетическими шлаками. В разливной ковш перед выпуском стали наливают жидкий шлак, а затем с большой высоты мощной струей выпускают расплавленную сталь. Происходят энергичное перемешивание металла со шлаком и рафинирование стали. При этом сера, неметаллические включения, газы удаляются, резко повышаются прочность и пластичность стали.
Электрошлаковый переплав (ЭШП). Слиток из обычной стали перерабатывают в электрод, но плавление его происходит не под действием электрической дуги, а за счет тепла, выделяемого в слое расплавленного шлака, который является сопротивлением при прохождении через него тока. Электрод-слиток вводят в медный охлаждаемый кристаллизатор; заливают расплавленный шлак, состоящий из оксидов кальция, алюминия, флористого кальция. Шлак обладает высоким электрическим сопротивлением, и при прохождении через него тока выделяется большое количество тепла.
Электронно-лучевой переплав. Применяется он для изготовления деталей ракетной, космической техники, для получения тугоплавких металлов. Плавление металлов происходит в глубоком вакууме под действием потока электронов, излучаемых высоковольтной катодной пушкой. Излучаемые электроны направляются на металл, при столкновении с которыми он плавится. Его капли стекают в водоохладитель и остывают.
Плазменно-дуговой переплав. Это наиболее экономичный и перспективный способ, в котором особо чистые, прочные и пластичные металлы получают с помощью плазмы, т.е. потока ионизированных газов, разогретых до десятков тысяч градусов. Плазменная дуга образуется между металлом и катодом плазмотрона.
Расплавка стали. Это операция, определяющая качество готового изделия. Сталь из печи выпускают в разливочный ковш, а затем направляют на разливку. Существуют два способа разливки: в изложницах и на установках непрерывной разливки стали. Изложницы — это чугунные формы. Разливка в изложницы происходит сверху или снизу. При разливке сверху сталь заливают в каждую изложницу отдельно, а при заливке снизу одновременно заливают несколько изложниц. Непрерывную заливку осуществляют на вертикальных и радиальных машинах.