Топливо

Ядерное топливо

Ядерное топливо – это материалы, которые используются в ядерных реакторах для осуществления цепной ядерной реакции деления. Ядерное топливо имеет принципиальные отличия от других видов топлива, которые использует человек. Оно чрезвычайно высокоэффективно, но и весьма опасно для человека и может стать причиной очень серьезных аварий, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Ядерное топливо

Рис. 1. Ядерное топливо почти готово к работе

Цепная ядерная реакция (рисунок 2) представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2-3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла.

Осколками деления называют ядра, образующиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечетным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с четным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом.

Механизм протекания цепной ядерной реакции

Рис. 2. Механизм протекания цепной ядерной реакции

На Атомные электрические станции (АЭС) и другие ядерные установки топливо приходит в виде довольно сложных технических устройств – тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке обычно заменяют треть топлива и полностью производят смену его расположения в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, все же является весьма условным, позволяющим иметь общее представление об этом процессе. В реальности же загрузка топлива в разные типы реакторов осуществляется индивидуально, сборками с различными степенями обогащения топлива и этому предшествуют сложные ядерно-физические расчеты конфигурации активной зоны реактора в специализированном программном обеспечении, которые совершаются на годы вперед и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определенным требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым.

Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности ее характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива все меньше влияют на его реактивность. В результате происходит выравнивание по времени величин энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всем мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ – внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу. Этот способ имеет много важных преимуществ.

Ядерный реактор. Вид изнутри

Рис. 3. Ядерный реактор. Вид изнутри

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора.

Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счет этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определенным температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки.

Схема ядерного реактора

Рис. 4. Схема ядерного реактора

1. Урановое топливо

Урановое ядерное топливо получают переработкой руд.

В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения, в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка производят непосредственно под землей. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трехвалентного железа (для окисления урана U(IV) до U(VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимают на поверхность. Далее его подают на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.

Природный уран

Рис. 5. Природный уран

Оксид урана в виде топливной таблетки

Рис. 6. Оксид урана в виде топливной таблетки

Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды. Гидрометаллургическая переработка – дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((NH4)2U2O7). Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.

Концентрат закиси-окиси урана

Рис. 7. Концентрат закиси-окиси урана

Обогащение методами газовой термодиффузии или центрифугированием. UF6, обогащенный по 235 изотопу переводят в двуокись UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

2. Ториевое топливо

Торий также является одним из видов топлива для ядерных реакторов. Однако торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  • запасы урана достаточно велики;
  •  извлечение тория сложнее и дороже из-за отсутствия богатых месторождений;
  •  образование 232U, который, в свою очередь, образует γ- активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  •  переработка облученных ториевых ТВЭЛов сложнее и дороже переработки урановых.

ториевое ядерного топлива

Рис. 8. Фото фрагмента ториевого ядерного топлива

В прошлом столетии были предприняты множество попыток по разработке ториевого топлива как альтернативу урановому. В ходе исследований предполагалось осуществить замену заменить ядерное топливное сырье 238U на 232Th, генерирующий при нейтронном захвате делящийся 233U. Изотоп 235U или плутоний нужны в начальной стадии топливного цикла в качестве делящегося драйвера, а затем свой вклад в производство энергии начинает вносить 233U, полученный при нейтронном облучении 232Th. Ранние работы в этой области имели целью увеличение наработки нового топлива в ЛВР, так как деление 233U характеризуется более высоким значением коэффициента η (среднее число нейтронов деления на поглощенный топливом нейтрон), чем деление 235U, что означает наличие большего числа свободных нейтронов для воспроизводства ядерного топлива. В ториевом цикле производится очень мало плутония и других трансуранов, что уменьшает радиотоксичность отработавшего топлива.

Некоторые исследования ториевого топлива в прошлом включали переработку и выделение 233U с последующим его использованием в свежих сборках. Однако переработка ториевого топлива не является доказанной технологией, а изготовление сборок с 233U осложняется присутствием 232U и связанного с ним сильного гамма-излучения. Кроме того, выделение 233U противоречило бы идее нераспространения (233U может быть использован для создания ядерного оружия), и поэтому новейшие разработки сконцентрированы на однократном топливном цикле с потреблением 233U по мере его генерации. Основной недостаток такой концепции связан с медленными темпами конверсии исходного ториевого сырья в 233U.

3. Плутониевое топливо

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией.

Элементарные кирпичики плутониевого топлива

Рис. 9. Элементарные кирпичики плутониевого топлива

За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона, на что не рассчитаны штатные системы управления реактором.