Содержание страницы
Трубопровод — это объект, который постоянно контактирует с внешней средой, он не может быть полностью изолирован от нее. Поэтому на его поверхности происходят не очень благоприятные, с точки зрения техники, процессы, например – коррозия (рис. 24).
Коррозия металлов – это процесс, вызывающий разрушение металла или изменение его свойств в результате химического либо электрохимического воздействия окружающей среды.
Рис. 24 Разрушение нефтесборного трубопровода диаметром 426 мм
На коррозию влияют такие факторы, как неоднородность состава металла, неоднородность условий на поверхности металла, состав транспортируемой среды. Следует сделать вывод, что коррозия металлов – процесс неизбежный, но зная механизм протекания коррозии, можно затормозить его таким образом, чтобы обеспечить сохранение работоспособности трубопроводов в течение достаточно длительного времени. Для этого применяют разнообразные изоляционные материалы.
Изоляционные материалы.
Основное условие борьбы с грунтовой коррозией подземных трубопроводов, а также с воздушной коррозией надземных трубопроводов – предотвращение непосредственного контакта металла труб с агрессивной средой, что достигается созданием на поверхности трубопровода специальной оболочки, называемой изоляционным покрытием. Хорошее изоляционное покрытие исключает также попадание блуждающих токов на трубопровод, а,
следовательно, защищает его от электрохимической коррозии. Изоляционное покрытие имеет определенную конструкцию в зависимости от коррозионной активности грунтов.
Магистральные трубопроводы имеют комплексную защиту, состоящую из изоляционного покрытия в сочетании с электрозащитой. Эффективность электрозащиты и ее стоимость во многом зависят от правильности выбора типа изоляционного покрытия, от свойств материала покрытия и качества его нанесения. В связи с этим ко всем материалам, применяемым для изоляции трубопроводов, предъявляют жесткие требования по соблюдению определенных физико-механических свойств, композиционного состава, геометрических размеров, состоянию поверхности, загрязненности примесями и т.п. Комплекс таких требований входит в технические условия, по которым и поставляют изоляционные материалы.
Изоляционные материалы для защиты газонефтепроводов можно подразделить на следующие:
- полимерные,
- битумные,
- лакокрасочные,
- стеклоэмалевые и др.
Покрытия на основе этих материалов называются соответственно полимерными, битумными и т.д.
Изоляционное покрытие, как правило, многослойное и может состоять из слоев различных материалов (например, битумно-резиновые) или слоев одного материала (например, покрытие из полимерных лент, порошков или стеклоэмали, не считая грунтовки). Тип и общая толщина изоляционного покрытия зависят от коррозионной активности грунта, характеризующегося определенным значением его электросопротивления, а также от назначения трубопроводов, наличия блуждающих токов и других местных условий.
Применяют нормальный и усиленный тип изоляционных покрытий. Усиленный тип изоляционного покрытия используют всегда при прокладке трубопроводов диаметром 1020 мм и более в солончаковых и поливных почвах, на подводных переходах и поймах рек, на переходах через железные и автомобильные дороги и в других осложненных условиях прокладки.
Выбор материала для изоляционного покрытия определяется комплексом предъявляемых к нему требований. Изоляционное покрытие не должно разрушаться в процессе укладки и засыпки трубопровода и должно надежно защищать его от коррозии в процессе эксплуатации.
Поэтому оно должно быть:
- плотным;
- прочным;
- обладать хорошей сцепляемостью с материалом трубопровода (адгезией);
- высокой теплоустойчивостью и морозостойкостью;
- высоким электросопротивлением, не содержать водорастворимых примесей;
- быть стойким против насыщения влагой (набухания);
- возможностью механизации процесса нанесения изоляционного покрытия как в базовых, так и в полевых условиях;
- быть не дефицитным (широкое применение находят только те материалы, которые имеются в достаточном количестве);
- экономичностью (стоимость изоляционного покрытия должна быть во много раз меньше стоимости защищаемого объекта).
В настоящее время трубопроводы в основном изолируются: полимерными ленточными покрытиям; битумными, битум-полимерным, асфальто-смолистыми мастиками с применением полимерных ленточных обёрток; полимерными покрытиями заводского нанесения с изоляцией сварных стыков термоусаживающимися лентами и манжетами.
Полимерные материалы
Полимерные материалы – основные и перспективные для изоляции трубопроводов. По сравнению с другими материалами они обладают рядом преимуществ: лучшей водостойкостью, большим электросопротивлением и сроком службы, удобством и экономичностью использования. Полимерные материалы применяют в виде полимерных лент в базовых или трассовых условиях, или в виде полимерных композиций, наносимых на поверхность труб в порошкообразном или жидком виде в заводских или базовых условиях
Полимерные ленты.
Полимерные ленты предназначены для изоляции наземных и подземных трубопроводов диаметром не выше 1420 мм. (рис. 25). Они подразделяются на две группы: основные функции защитного покрытия исполняет полимерная пленка, а клей служит для приклеивания этой пленки к трубе; защитной изоляцией является клей, а пленка играет роль подложки и обертки. Имеются также ленты, в которых изоляционными свойствами обладают оба элемента — и полимерная пленка, и клей. Поверх полимерных лент применяют защитные от механических повреждений обертки. Использование полимерных лент упрощает технологию изоляционных работ на базе или трассе, повышает производительность труда по сравнению с использованием битумного покрытия.
Полимерные ленты применяют с битумно-полимерными, полимерные и даже простыми битумными грунтовками. На поверхность труб грунтовку
наносят распылением или специальными очистными, или комбинированными с изоляционными машинами.
Рис. 25 Нанесение полимерных лент в трассовых условиях
Также широко известны изоляционные ленты из полиэтилена (рис. 26). Такая лента обладает высоким электрическим сопротивлением, лучшей прилипаемостью, меньшим водопоглощением, высокой химической стойкостью, особенно к минеральным кислотам и щелочам, и сохраняет механическую прочность в более широком интервале температур, чем поливинилхлоридные ленты. Полиэтиленовую ленту можно наносить на трубопроводы при отрицательных температурах, вплоть до -40 ºС. Изготавливают также дублированные полиэтиленовые ленты, обладающие значительно более высокой прочностью и морозостойкостью, а также стабильностью характеристик в широком интервале температур.
Рис. 26 Лента полиэтиленовая для изоляции газонефтепроводов Перед началом гидроизоляции трубы необходимо:
- определить месторасположение газовой трубы и уточнить каких размеров труба;
- для просчета количества и определения необходимой изоляции рекомендуем обращаться к нашим специалистам за консультацией;
- определить способ нанесения ручной / механической машинкой гидроизоляции на трубу и температуру окружающей среды (рис. 27).
Рис. 27 Изоляция газовых труб крупного диаметра.
Битумные материалы
Для изоляции магистральных трубопроводов также применяют специальные изоляционные или строительные твердые нефтяные битумы. Их получают окислением или обработкой паром остаточных продуктов после прямой перегонки или после крекинга нефти или нефтепродуктов.
Битум представляет собой твердую, плавкую или вязкожидкую смесь углеводородов и их неметаллических производных, хорошо растворимых в сероуглероде, хлороформе и других органических растворителях. По своей структуре битум – полимерное вещество, имеющее длинные цепи молекул. Этим объясняется его высокая пластичность и эластичность в твердом состоянии. На основе нефтяного битума для изоляции газонефтепроводов изготавливают мастики, грунтовки, рулонные обертки (рис. 28).
Рис. 28 Битумные материалы для изоляции магистральных трубопроводов
Лакокрасочные материалы
Лакокрасочные материалы – поверхностные пленкообразующие покрытия, так как при нанесении их на какую-нибудь поверхность они способны высыхать с образованием твердой эластичной пленки. Их широко применяют для защиты от коррозии наружной и внутренней поверхности газонефтепроводов, резервуаров, различных подземных, надземных и подводных строительных конструкций и т.д. Пленкообразующее покрытие – сравнительно тонкий защитный слой.
В состав лакокрасочных материалов входят пленкообразующее вещество, наполнитель, пигмент, растворитель. В качестве пленкообразующих веществ применяют: высыхающие масла (главным образом растительные), группу олиф, представляющих собой предварительно обработанные масла, синтетические и натуральные каучуки, синтетические искусственные и природные смолы, некоторые продукты переработки нефти, которые характеризуются высокой полимеризационной способностью при обычных условиях (при небольшом повышении температуры) и т.д. Другую группу пленкообразующих веществ составляют лаки, представляющие собой растворы природных высокомолекулярных и синтетических полимерных веществ в том или ином легколетучем растворителе (рис. 29).
Рис. 29 Лакокрасочные материалы
Полимерные пленкообразователи могут быть превращаемыми, не превращаемыми и смешанными. Превращаемыми пленкообразователями считаются такие, при которых образование пленки происходит в процессе реакций полимеризации, поликонденсации или обеих реакций непосредственно в нанесенном слое покрытия. Не превращаемыми пленкообразователями считаются такие при которых пленкообразователь наносят в виде раствора не защищаемую поверхность, и он образует пленку в процессе коагуляции или испарения растворитель. Смешанными называются пленкообразователи, действующие частично по принципу превращаемы и не превращаемых.
Защитные покрытия выполняют многослойными, так как покровный материал не может давать беспористого слоя по условиям полимерного пленкообразования. Процессы испарения растворителя (для не превращаемых пленкообразователей) или удаления летучих (для превращаемых пленкообразователей) протекают после образования в первый момент внешней гелеобразной полимерной корочки (пленки). При этом молекулы растворителя или паров вынуждены проходить сквозь пленку, образую мелкие поры, или оставаться под пленкой, снижая адгезию пленки к покрываемой поверхности трубы.
Стеклянные покрытия
Стеклянные покрытия наносят двумя методами: стеклоэмалированием и остеклованием (стеклянными баллонами, стеклянным порошком и др.).
Эмаль, стеклоэмали – окрашенные в различные цвета окислами металлов легкоплавкие стекла, наплавляемые одним или несколькими тонкими слоями на металл (рис. 30, 7.31, 7.32). Основными компонентами почти всех эмалей являются двуокись кремния SiO2, борный ангидрид B2O3, окись алюминия Al2O3, окись титана TiO2, окислы щелочных и щёлочноземельных металлов, свинца, цинка, некоторые фториды и др. Силикатная эмаль изготавливается из сравнительно дешёвых и доступных материалов. Силикатноэмалевые покрытия защищают металл от коррозии, они устойчивы против кислот и щелочей при температуре до 300°С. Благодаря твёрдости и прочности эмалевые покрытия обладают длительным сроком службы.
Рис. 30 Трубы с эмалированным покрытием
Рис. 31 Внутренняя поверхность химического реактора с эмалевым покрытием
Рис. 32 Стальной сборный резервуар с эмалированным покрытием