Материаловедение

Цветные металлы и сплавы. Cвойства, марки и их применение

Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.

1. Медь и ее сплавы

В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.

Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.

По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению – на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

2. Латунь

Латунь – сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.

В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает “латунь”, остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры – на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 – это латунь, содержащая 90% меди, остальное – цинк; латунь алюминиевая ЛА77-2 – 77% меди, 2% алюминия, остальное – цинк; латунь алюминиевоникелькремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 – 75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное – цинк.

Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки-молнии, подшипники скольжения и разную фурнитуру.

3. Бронза

Бронза – сплав на основе меди, в котором в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Как и латуни, бронзы подразделяются на литейные и деформируемые. В обозначении марок бронз принята та же система, что и у латуней, только в начале проставляются буквы Бр, означающие – “бронза”.

Основные составы сплавов бронз, применяемых в качестве исходного материала для изготовления деталей:

Безоловянные литейные бронзы

  • БрА9Мц2Л, БрА10Мц2Л – антифрикционные детали и арматура, работающая в пресной воде, жидком топливе и паре при температурах до 250о С; и др.

Оловянные литейные бронзы

  • БрОЗЦ12С5 – арматура общего назначения;
  • БрОЗЦ7С5Н1 – детали, работающие в масле, паре и в пресной воде;
  • БрО4Ц7С5 – арматура и антифрикционные детали и др.

Алюминиевые бронзы

  • БрА5 – деформируется в холодном и горячем состояниях, коррозионностойкая, жаропрочная, стойкая к истиранию; предназначена для изготовления монет, деталей машин, работающих в морской воде и в химических средах;
  • БрА7 – деформируется в холодном состоянии, жаропрочная, стойкая к истиранию, коррозионностойкая к серной и уксусной кислотам; применяется для изготовления деталей химического машиностроения и скользящих контактов;
  • БрАЖМц10-3-1,5, БрАЖН10-4-4, БрАЖНМц9-4-4-1 – деформируются в горячем состоянии, обладают высокой прочностью при повышенных температурах, хорошей эрозионной, кавитационной и коррозионной стойкостью; из этих бронз производят трубные доски конденсаторов и детали химической аппаратуры; БрАМц9-2 – характеризуется высоким сопротивлением при знакопеременной нагрузке; рекомендуется для изготовления износостойких деталей, винтов, валов, деталей гидравлических установок и трубных досок конденсаторов;
  • БрАМц10-2 – имеет высокое сопротивление при знакопеременной нагрузке; пригодна для выполнения заготовок и фасонного литья в судостроении;
  • БрАЖ9-4 – обладает высокими механическими и антифрикционными свойствами, коррозионностойкая; рекомендуется для производства шестерен, втулок и седел клапанов для авиапромышленности, отливки массивных деталей для машиностроения.

Бериллиевые бронзы

  • БрБ2 ,БрБНТ1,7, БрБНТ1,9, БрБНТ1,9Мг – обладают высокой прочностью и износостойкостью, хорошими пружинящими и антифрикционными свойствами, средней электропроводностью и теплопроводностью, деформируются в закаленном состоянии. Из этих бронз изготовляют пружины и пружинящие детали ответственного назначения, износостойкие детали всех видов, неискрящий инструмент.

Кремниевые бронзы

  • БрКМц3-1 – коррозионностойкая, жаропрочная, имеет высокое сопротивление сжатию, пригодна для сварки; применяется для изготовления деталей для химических аппаратов, пружин и пружинящих деталей, сварных конструкций и деталей для судостроения;
  • БрКШ-3 – обладает высокими механическими, технологическими и антифрикционными свойствами, коррозионностойкая; предназначена для производства ответственных деталей в моторостроении, а также направляющих втулок.

Марганцовая бронза

  • БрМц6 – имеет высокие механические свойства, хорошо деформируется в горячем и холодном состояниях, коррозионностойкая, жаропрочная. Из этой бронзы изготовляют детали, работающие при повышенных температурах.

Кадмиевая и магниевая бронзы

  • БрКд1 и БрМг0,3 – отличаются высокой электропроводностью и жаропрочностью. Их используют при производстве коллекторов электродвигателей и деталей машин контактной сварки.

Серебряная бронза

  • БрСр0,1 – предназначена для изготовления коммутаторов, коллекторных колец и обмотки роторов турбогенераторов.

Хромовая бронза

  • CuCrl – предназначена для производства сварочных электродов, электродеталей и оборудования сварочных машин.

Теллуровая бронза

  • CuFeP – выполняют детали, обрабатываемые на автоматах, элементы телетехнических, радиотехнических, электротехнических и электронных устройств.

4. Алюминий и его сплавы

Алюминий по распространенности в природе занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа.

Алюминий представляет собой серебристо-белый пластичный металл. В воздушной среде он быстро покрывается окисной пленкой, которая надежно защищает его от коррозии. Алюминий химически стоек против азотной и органических кислот, но разрушается щелочами, а также соляной и серной кислотами. Важнейшее свойство алюминия – небольшая плотность – 2,7 г/см3, т.е. он в три раза легче железа. Температура плавления его 660°С, теплоемкость – 0,222 кал/г, теплопроводность при 20°С – 0,52 кал/(см·с·оС), удельное электрическое сопротивление при 0°С – 0,286 Ом/(мм2·м). Механические свойства алюминия невысоки: сопротивление на разрыв – 50– 90 МПа (5–9 кгс/мм2), относительное удлинение – 25–45%, твердость – 13–28 НВ. Высокая пластичность (максимальная пластичность достигается отжигом при температурах 350–410°С) этого металла позволяет прокатывать его в очень тонкие листы (фольга имеет толщину до 0,005 мм). Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку – 1,8%. Для повышения прочности в алюминий вводят кремний, марганец, медь и другие компоненты. Кристаллическая решетка алюминия – куб с центрированными гранями, а=0,404 Нм (4,04 А).

Алюминий и его сплавы необходимы для самолето- и машиностроения, строительства зданий, линий электропередач, подвижного состава железных дорог. В металлургии алюминий служит для получения чистых и редких металлов, а также для раскисления стали. Из него изготовляют различные емкости и арматуру для химической промышленности. В пищевой промышленности применяется упаковочная фольга из алюминия и его сплавов (для обертки кондитерских и молочных изделий). Широкое применение получила алюминиевая посуда. Алюминий хорошо подвергается различным тонким покрытиям и окраске, поэтому его используют как декоративный материал.

Исходным материалом для получения алюминиевых сплавов является первичный алюминий. Марки первичного алюминия: особой чистоты – А999, высокой чистоты – А995, А99, А97, А95, технической чистоты – А85, А8, А7, А7Е, А6, А5 ,А5Е, А0.

Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например: сплав АК7М2п – 7% кремния, 2% меди, остальное – алюминий, АК21М2,5Н2,5 – 21% кремния, 2,5% меди, 2,5% никеля, остальное – алюминий.

Для изготовления фасонных отливок предусмотрено пять групп алюминиевых литейных сплавов:

  • на основе алюминий – кремний – АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9- 1, АЛ34, АК9, АК7;
  • на основе алюминий – кремний – медь – АЛЗ, АЛ5, АЛ5-1, АЛ6, АЛ32, АК5М2, АК5М7, АК7М2, АК4М4;
  • на основе алюминий – медь – АЛ7, АЛ19,АЛЗЗ;
  • на основе алюминий – магний – АЛ8, АЛ13, АЛ22, АЛ23, АЛ23- 1, АЛ27, АЛ27-1, АЛ28;
  • на основе алюминий – прочие компоненты – АЛ1, АЛ11, АЛ21, АЛ24, АЛ25, АЛЗ0, АК21М2,5Н2,5, АК4М2Ц6.

Сплав алюминия с кремнием – силумин (в чушках), используемый для производства литейных и обрабатываемых давлением алюминиевых сплавов.

Силумин изготовляется четырех марок – СИЛ-00, СИЛ-0, СИЛ-1 и СИЛ-2. Увеличение номера в обозначении марки сплава указывает на рост примесей в нем.

На поверхность чушек силумина несмываемой и невыцветаемой цветной краской наносится буква С, цвет которой соответствует определенной марке: синий – СИЛ-00, белый – СИЛ-0, красный – СИЛ-1, черный – СИЛ-2.

Алюминий и алюминиевые деформируемые сплавы, предназначенные для изготовления полуфабрикатов (листов, лент, полос, плит, профилей, панелей, прутков, труб, проволоки, штамповок и поковок) методом горячей и холодной деформации, а также слитков и слябов.

Алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья, а также монометаллических и биметаллических лент и полос путем прокатки с последующей штамповкой из них вкладышей, нормируются ГОСТ 14113-78. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов с указанием назначения каждого сплава:

  • АОЗ-7, АО9-2 – отливки монометаллических вкладышей и втулок;
  • АО6-1, АО9-1, АО20-1 – биметаллические ленты и вкладыши; толщина антифрикционного слоя – 1 мм;
  • АН2-5 – отливки вкладышей, монометаллические и биметаллические ленты; толщина антифрикционного слоя – менее 0,5 мм;
  • АСМ, АМСТ – биметаллические ленты и вкладыши; толщина антифрикционного слоя – менее 0,5 мм.

5. Цинк и его сплавы

Сплав цинка с медью – латунь. Цинк – металл светло-сероголубоватого цвета, хрупкий при комнатной температуре и при 200°С, при нагревании до 100–150°С становится пластичным. В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия стальных изделий, изготовления гальванических элементов, типографские и др.

Цинковые сплавы используются в автомобиле- и приборостроении и других отраслях промышленности. Марки этих сплавов:

  • ЦАМ4-10 – особо ответственные детали;
  • ЦАМ4-1 – ответственные детали;
  • ЦАМ4-1в – неответственные детали;
  • ЦА4о – ответственные детали с устойчивыми размерами;
  • ЦА4 – неответственные детали с устойчивыми размерами.

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий. Марки этих сплавов:

  • ЦАМ9-1,5Л – отливка монометаллических вкладышей, втулок и ползунов; допустимые нагрузка – 10 МПа (100 кгс/см2), скорость скольжения – 8 м/с, температура 80 оС; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 кгс/см2), 10 м/с и 100о С соответственно;
  • ЦАМ9-1,5 – получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые нагрузка – до МПа (250 кгс/см2), скорость скольжения – до 15 м/с, температура 100о С;
  • ЦАМ10-5Л – отливка подшипников и втулок; допустимыя нагрузка – 10 МПа (100 кгс/см2), скорость скольжения – 8 м/с, температура 80о С;
  • ЦАМ10-5 – прокатка полос для направляющих скольжения металлорежущих станков и других изделий; рабочие нагрузка до 20 МПа (200 кгс/см2), скорость скольжения – до 8 м/с, температура 80о С.

6. Титан и его сплавы

Титан – металл серебристо-белого цвета, один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61%) он занимает десятое место. Титан легок (плотность его 4,5 г/см3), тугоплавок (температура плавления 1665°С), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. Титан устойчив против кавитационной коррозии и под напряжением. При температурах до 882°С он имеет гексагональную плотно упакованную решетку, при более высоких температурах – объемно-центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его – 300–1200 МПа (30–120 кгс/мм2), относительное удлинение – 4–30%. Предел прочности титановых сплавов – 350–1000 МПа (35–100 кгс/мм2), относительное удлинение – 4–10%.

Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в самолето-, ракето- и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Двуокись титана применяется при производстве белил и эмалей.

Для изготовления полуфабрикатов предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава предусмотрены следующие марки: ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1, ОТ4, ВТ5, ВТ5-1, ВТ6, ВT3-1, ВТ9, ВТ14, ВТ16, ВТ20, ВТ22, ПТ-7М, ПТ-ЭВ, ПT-1M. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.

7. Припои

Припои – металл или сплав, предназначенный для соединения деталей пайкой. Температура плавления припоев должна быть ниже температуры плавления материалов паяемых деталей.

Припои разделяют на мягкие (tпл≤400 °С) и твердые (tпл >400 °С). Основные материалы мягких припоев – сплавы олова и свинца. Их обозначение (например, ПОС 61) расшифровывается так: П – припой, ОС – оловянно-свинцовый, 61 – содержание олова в процентах. Твердые припои выполняют на серебряной основе (например, ПСр 72, где 72 – содержание серебра, %) или на медно-латунной и медно-никелевой основах. Серебряные припои применяют для пайки черных и цветных металлов, кроме сплавов алюминия и магния, а припои на медной основе – для пайки углеродистых и легированных сталей, никеля и его сплавов.

Таблица 4. Области применения оловянно-свинцовых припоев

Марка Применение
ПОС 90 Лужение и пайка швов пищевой посуды и медицинской аппаратуры
ПОС 61 Лужение и пайка электроаппаратуры, точных приборов

с высокогерметичными швами, где не допускается перегрев

ПОС 40 Лужение и пайка электрорадиоаппаратуры, деталей из оцинкованного

железа с герметичными швами

ПОС 10 Лужение и пайка контактных поверхностей электрических аппаратов,

приборов, реле

ПОС 61М Лужение и пайка медной проволоки, печатных проводников

в кабельной промышленности, электро- и радиоэлектронной промышленности

ПОСК 50-18 Пайка деталей, чувствительных к перегреву
ПОССу 61-0,5 Лужение и пайка электроаппаратуры, обмоток электрических машин,

оцинкованных радиодеталей при жестких требованиях к перегреву

ПОССу 50-0,5 Лужение и пайка авиационных радиаторов, пайка пищевой посуды

с последующим лужением оловом

ПОССу 40-0,5 Лужение и пайка жести, обмоток электрических машин,

пайка радиаторных трубок, холодильных агрегатов, оцинкованных деталей

ПОССу 35-0,5 Лужение и пайка свинцовых кабельных оболочек, электротехнических

изделий неответственного назначения

ПОССу 30-0,5 Лужение и пайка листового цинка, радиаторов.

Лужение и пайка радиаторов

ПОССу 25-0,5 Лужение и пайка трубок теплообменников, электрических ламп
ПОССу 18-0,5 Пайка трубопроводов, работающих при повышенных температурах
ПОССу 95-5 Лужение и пайка холодильных установок, тонколистовой упаковки.

Припой широкого назначения

ПОССу 40-2 Лужение и пайка в холодильном и электроламповом производстве,

абразивная пайка

ПОССу 30-2,

ПОССу 18-2,

ПОССу 15-2,

ПОССу 10-2

Пайка в автомобилестроении
ПОССу 8-3 Лужение и пайка в электроламповом производстве
ПОССу 5-1 Лужение и пайка деталей, работающих при повышенной температуре
ПОССу 4-6 Пайка белой жести, лужение и пайка деталей с закатанными

и клепаными швами из латуни и меди, шпатлевка кузовов автомобилей

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *