Содержание страницы
1. Ориентация и угол наклона плоских солнечных коллекторов
Источником энергии работы солнечных тепловых коллекторов является Солнце. Если рассматривать плоские стационарные СК любого типа, то они жестко закреплены либо на склонах крыш, либо на плоской крыше, либо на поверхности земли. Солнце светит на поверхность земли под углом, зависящим от времени суток и времени года. Диапазоны изменения этих углов очень значительные и зависят от широты и долготы места размещения объекта. Для Москвы, минимальная продолжительность светового дня 7 часов, а максимальная – 17 часов 30 минут. С учетом того, что за час Солнце перемещается по горизонту на 15 градусов, суммарное угловое перемещение летом может достигать 265 градусов, в то время, как зимой, 105 градусов. По склонению над горизонтом, Солнце также изменяет свое положение в большом диапазоне от 11 до 57 градусов. В других точках расположения объектов, углы изменения направления солнечного света, другие.
Во второй главе мы рассматривали значения максимального КПД солнечного коллектора, при этом, предполагалось, что лучи Солнца падают на поверхность коллектора перпендикулярно. В реальности, соблюсти это требование невозможно. Даже, если вы выставили направление коллектора строго на юг для точки размещение объекта в момент летнего солнцестояния, то, через несколько дней, максимальные значения будут недостижимы, поскольку угол падения лучей по горизонту изменится за этот период на несколько градусов.
Под оптимальной ориентацией стационарно размещенного солнечного коллектора понимают положение, максимально близкое к положению Солнца в момент астрономического времени 12 часов. Напоминаем, что в каждом месте существует разница директивного и астрономического времени и для Москвы, к примеру, эта разница составляет около 34 минут.
Если вы используете солнечные коллекторы только в летнее время, то рекомендуется устанавливать угол наклона коллекторов градусов на 5 меньше значения угла широты места расположения объекта. Москва расположена на 56 градусе северной широты. Следовательно, оптимальное расположение угла наклона коллектора будет около 50 градусов. Но если вы используете коллекторы круглый год, то угол наклона коллектора к горизонту рекомендуется выбрать на 15 градусов меньше широты. В нашем случае, это примерно 40 градусов. На ориентированном склоне крыш выполнить такие требования очень сложно, поэтому, можно сказать, что уровень максимально возможного мгновенного КПД для стационарного солнечного коллектора практически никогда не достижим.
Если реальная ориентация солнечного коллектора на объекте отличается менее 15 градусов по горизонту от нулевой ориентации на астрономический юг, то потери не столь велики, но если технически невозможно реализовать данные требования, то, эффективность гелиосистем падает и инвестиции в них никогда не окупятся.
Угловая эффективная зона работы плоских и вакуумных трубчатых коллекторов составляет около 45 градусов в каждую сторону от перпендикуляра к поверхности, то есть в сумме около 90 градусов.
Характер изменения эффективности работы коллектора от угла падения солнечных лучей зависит от конкретной конструкции солнечного коллектора и определяется экспериментально. В идеальном варианте, в диапазоне изменения падения лучей –45 –0 + 45 градусов, при абсолютном перпендикуляре падения солнечных лучей в максимальной точке, мощность солнечного коллектора изменяется на 25 %, но в реальности это изменение значительно больше и составляет около 50 %, причем у плоских коллекторов этот показатель еще ниже, поскольку абсорбер, в крайних положениях солнца затеняется боковыми стенками коллектора.
Некоторые производители указывают в характеристиках оборудования угловые коэффициенты.
IAM (Incident Angle Modifier) – угловой коэффициент. Поправочный коэффициент, который помогает учесть конструктивные особенности конкретного коллектора, чтобы откорректировать количество солнечного излучения поступающего при различных углах падения относительно основной плоскости солнечного коллектора (учитывается все отражение, преломление и затенение солнечных лучей).
У открытых солнечных коллекторов данный коэффициент равен 1. Максимальный мгновенный КПД 0,5–0,9.
У закрытых плоских – IAM = 0,85–0,95 в зависимости от толщины воздушного слоя и высоты боковой стенки коллектора над плоскостью абсорбера. Максимальный мгновенный КПД 0,74–0,88. У вакуумных одностенных перьевых трубчатых коллекторов
IAM = 0,9–1,1, максимальный мгновенный КПД 0,65–0,80.
У вакуумных коаксиальных – IAM = 1,1–1,6, максимальный КПД прямого солнечного излучения 0,45–0,75. но вакуумные коаксиальные трубки с цилиндрическим абсорбером могут воспринимать не только прямое, но и рассеянное солнечное излучение. действие которого можно учесть поправочным коэффициентом интенсивности, равным для солнечной погоды 1,15.
В виде графиков корректировка значения мощности солнечного излучения представлена на рис. 25.
Рис. 25. Графики зависимости мощности солнечного излучения от угла падения лучей для разных типов солнечных коллекторов
Из графика видно, что площадь фигуры под графиком мощности трубчатого вакуумного коллектора больше аналогичной фигуры плоского коллектора примерно на 15 %, Поскольку движение Солнца равномерное, можно сказать, что энергия, выработанная коллектором на вакуумных трубках больше плоского коллектора на 15 % при равных габаритах и ориентации на Солнце.
Солнце движется по небосводу по двум координатам. Вводятся два угловых коэффициента Поперечный (IAMT – transversal) и Продольный (IAML – longitudinal). Обычно у плоских гелиоколлекторов оба эти коэффициента одинаковые, поэтому указывается только одно значение. У трубчатых вакуумных гелиоколлекторов может существенно отличается Поперечный коэффициент, а Продольный, примерно такой же, как и плоских коллекторов.
Данные угловых коэффициентов некоторых типов тепловых солнечных коллекторов получены в Институте солнечных технологий Solartechnik SPF (Рапперсвиль, Швейцария) и представлены на рис. 26.
Рис. 26. Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов (Институт солнечных технологий Solartechnik SPF (Рапперсвиль, Швейцария) www.spf. ch (начало)
Рис. 26. Графики изменения угловых коэффициентов некоторых типов солнечных тепловых коллекторов (Институт солнечных технологий Solartechnik SPF (Рапперсвиль, Швейцария) www.spf. ch (окончание)
Среднегодовая выработка тепловой энергии
Солнце в течении дня движется по сложной траектории, которая зависит от времени года, места расположения объекта. Конструкции солнечных коллекторов очень разнообразные, возможно разнообразное расположение коллектора на объекте. Все это очень сильно затрудняет расчет среднегодовой выработки тепловой энергии. Экспериментальные данные по производительности СК очень сильно зависят от погодных условий. Для оценки годовой выработки тепла солнечным коллектором применяются методы математического моделирования. Статистические экспериментальные данные по среднегодовой выработки требуют очень длительного периода времени.
Одной из доступных и наглядных программ является немецкая разработка GeoT*SOL basic 2.0. однако не понятны исходные формулы для математического моделирования, примененные в этой программе и на сколько они соответствуют реальным конструкциям солнечных коллекторов.
В любом случае это сложнейшая задача математического моделирования. В данном учебном пособии можно говорить только о качественном анализе среднегодовой выработки тепловой энергии солнечными коллекторами разных типов.
2. Сравнительный анализ применения солнечных коллекторов различных типов
Поскольку конструкции, место расположение, ориентация, особенности монтажа коллекторов очень разнообразные, то для анализа эффективности рассмотрим качественные характеристики мгновенного КПД различных типов тепловых солнечных коллекторов. На рис. 27 представлены усредненные значения КПД, оптических КПД, коэффициентов теплопотерь для основных типов СК.
Упрощенный расчет КПД коллекторов можно произвести по формуле:
КПД = КПДопт – Ктп·У. (3)
Средние значения оптического КПДопт для позиций на рис. 27, составляют 1 – 0,95; 2 – 0,85; 3 – 0,75; 4 – 0,8; 5 – 0,75.
Средние значения коэффициента теплопотерь Ктп, соответственно, 1 –15; 2 – 7; 3 – 5; 4 – 3,5; 5 – 2 измеряется – Вт/(м2·°С).
У – соотношение разности температур теплоносителя на входе и выходе из коллектора Т, деленное на интенсивность солнечно излучения, измеряется в м2·°С/Вт.
Рис. 27. Мгновенный КПД солнечных коллекторов в зависимости от интенсивности солнечной радиации и разности температур на входе и выходе коллектора [1]: 1 – абсорбер; 2 –коллектор с однослойным остеклением; 3 –коллектор с двухслойным остеклением; 4 — плоский коллектор с высокоселективным покрытием абсорбера; 5 – трубчатый вакуумный коллектор
Оптический КПД характеризует конструктивную способность СК воспринимать солнечную энергию и зависит только от способности прозрачного защитного слоя пропускать энергию, наличию прослойки воздуха между защитным прозрачным слоем и абсорбером и КПД абсорбера.
Интенсивность солнечного излучения сильно зависит от атмосферных факторов. Напоминаем: 1000 Вт/м2 – ясная солнечная погода летом. 800–600 Вт/м2 – небольшая облачность, летом, 300 Вт/м2 – пасмурно летом, зимой эти показатели ниже примерно в 2 раза.
Также напоминаем, что на рис. 27 указаны значения МГНОВЕННОГО МАКСИМАЛЬНОГО КПД. Реальные средние значения примерно в два раза ниже.
Из рис. 27 видно:
Открытые солнечные коллекторы – эффективное использование возможно только в солнечную погоду при подогреве воды на 5–10 °С, при температуре окружающего воздуха выше 20 °С.
Плоские закрытые солнечные с остеклением в 1 слой – применение целесообразно для подготовки горячей воды для нужд приусадебных и дачных участков в летний период при температуре окружающего воздуха не ниже 12–15 °С, способны прогреть воду на 15–25 °С.
Плоские закрытые солнечные с остеклением в 2 слоя – применяются, как и в предыдущем случае, но способны прогреть воду до 35 градусов.
Современные плоские солнечные коллекторы с высокоселективням покрытием абсорбера и хорошей термоизоляцией корпуса – могут эффективно использоваться при температуре окружающего воздуха от 5–10 °С и способны создавать перепад температур в коллекторе до 40 °С.
Трубчатые вакуумные солнечные коллекторы
Могут эффективно использоваться при температурах окружающего воздуха ниже нуля градусов Цельсия (всесезонные) при обеспечени перепада температур в коллекторе выше 80 °С.
Относительно возможности использования солнечных коллекторов в системах бытового нагрева воды на дачных участках, систем ГВС, систем отопления и технологических системах, можно представить следующие диапазоны изменения параметра У.
Зона А при У < 0,03 м2·°С/Вт – обогрев воды на дачных участках, летом,
Зона Б при У = 0,03–0,08 м2·°С/Вт – для систем ГВС в летний период.
Зона В при У > 0,08 м2·°С/Вт – системы отопления и ГВС капитальных сооружений.
При значениях У > 0,12, возможно использование систем солнечных коллекторов в многоквартирных домах и технологических промышленных процессах.
Литература:
1. Харченко Н.В. Индивидуальные солнечные установки. М., Энергоатомиздат, 1991, 208 с.
ЗАКЛЮЧЕНИЕ
Суммарное количество всей потребляемой энергии человечеством составляет всего около 0,0125 % доли процента от энергии возобновляемых источников, имеющихся на планете Земля, главная из которых энергия Солнца.
Теплоэнергетика, наряду с другими отраслями, вносит большой вклад в накопление парниковых газов, поскольку именно при сжигании ископаемого топлива в котлах коммунального хозяйства и индивидуальных домов, происходит выброс диоксида углерода. Применение, при решении вопросов теплоснабжения, энергосберегающих высокоэффективных технологий и экологически чистых возобновляемых источников энергии, позволит сохранить планету.
По данным института АЕЕ INTEC, на конец 2012 г. в мире установлено 383 млн квадратных метров солнечных тепловых установок общей тепловой мощностью 268,1 ЕВт с годовой выработкой тепловой энергии 225 ТВт·ч. С каждым годом эти показатели только возрастают. К сожалению, в России общая площадь солнечных тепловых установок оценивается в 30 тыс. м2.
Более 60 % территории России, в том числе и многие северные районы, характеризуются среднегодовым поступлением солнечной радиации от 3,5 до 4,5 кВт·ч/м2 в день, а регионы Приморья и юга Сибири от 4,5 до 5,0 кВт·ч/м2 в день, что не сильно отличается от аналогичных показателей центральной Европы (5,0– 5,5 кВт·ч/м2 в день).
Солнечные тепловые коллекторы успешно применяются для подготовки горячей воды на дачном участке, в системах отопления и горячего водоснабжения индивидуальных и коллективных домов, промышленных системах теплоснабжения.
В настоящее время наибольшее распространение получили:
- солнечные тепловые коллекторы открытого типа;
- плоские закрытые солнечные трубчатые тепловые коллекторы;
- закрытые трубчатые и объемные солнечные коллекторы;
- вакуумные трубчатые солнечные коллекторы.
Доля последних составляет более 62 % от всего объема выпускаемых в мире солнечных коллекторов.
С точки зрения эффективности использования различных типов солнечных коллекторов и их применения в хозяйстве, можно рекомендовать.
Открытые солнечные коллекторы – эффективное использование возможно только в солнечную погоду при подогреве воды на 5–10 °С, при температуре окружающего воздуха выше 20 °С.
Плоские закрытые солнечные с остеклением в 1 слой – применение целесообразно для подготовки горячей воды для нужд приусадебных и дачных участков в летний период при температуре окружающего воздуха не ниже 12–15°С, способны прогреть воду на 15–25°С. Плоские закрытые солнечные с остеклением в 2 слоя – применяются, как и в предыдущем случае, но способны прогреть воду до 35 градусов. Современные плоские солнечные коллекторы с высокоселективням покрытием абсорбера и хорошей термоизоляцией корпусамогут эффективно использоваться при температуре окружающего воздуха от 5–10°С и способны создавать перепад температур в коллекторе до 40°С.
Трубчатые вакуумные солнечные коллекторы
Могут эффективно использоваться при температурах окружающего воздуха ниже нуля градусов Цельсия (всесезонные) при обеспечении перепада температур в коллекторе выше 80 °С.
Вопросы работы гелиосистем с использованием солнечных тепловых коллекторов будут рассмотрены в следующих частях учебного пособия «Комбинированные тепловые гелиосистемы».