Топливо

Автомобильный бензин. Бензиновое топливо

Автомобильный бензин – горючая смесь лёгких углеводородов с температурой кипения от 33 до 205 ºC, применяемая в качестве одного из вида топлив для автомобильных двигателей. Компонентный состав бензина определяется его маркой и зависит от метода его получения, сезона применения (летний, зимний) и добавления различных присадок.

бензин

Надежная, эффективная, долговечная и экономичная работа бензинового двигателя будет обеспечена только в том случае, если бензин удовлетворяет перечисленным ниже требованиям.

  1. Имеет высокие карбюрационные свойства – образует такую рабочую смесь, которая обеспечивает легкий пуск двигателя и устойчивую работу при всех возможных режимах.
  2. Не вызывает детонационного сгорания смеси – имеет достаточную детонационную стойкость.
  3. Обеспечивает полное сгорание, не вызывает смоло- и нагарообразования на деталях двигателя.
  4. Обладает высокой стабильностью – при длительном хранении, перекачках и транспортировке состав и свойства остаются без существенных изменений.
  5. При хранении не вызывает коррозии металла резервуаров, а при сгорании – деталей двигателей от действия продуктов сгорания (имеет высокие антикоррозионные свойства).
  6. Теплота сгорания топливовоздушной смеси должна быть максимально возможной.

Соответствие бензина данным требованиям зависит от его физикохимических свойств:

  • детонационной стойкости;
  • фракционного состава;
  • давления насыщенных паров;
  • удельной теплоты сгорания;
  • кислотности;
  • индукционного периода.

Детонационная стойкость (детонация) – важнейший показатель качества бензина. Детонация вызывается самовоспламенением наиболее удаленной от свечи зажигания части бензовоздушной смеси, горение которой приобретает взрывной характер.

Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. Внешне детонация проявляется в виде звонких металлических стуков – результата многократных отражений от стенок камеры сгорания образующихся ударных волн и вибрации цилиндров.

Возникновению детонации способствуют повышение степени сжатия, увеличение угла опережения зажигания, повышенная температура воздуха и особенности камеры сгорания. Вероятность детонационного сгорания топлива возрастает при наличии нагара в камере сгорания и по мере ухудшения технического состояния двигателя. В результате детонации снижаются экономические показатели двигателя, уменьшается его мощность, ухудшаются токсические показатели отработавших газов. Также детонация приводит к прогару прокладок головки блока цилиндров.

Способность сжигаемого бензина вызывать детонацию зависит от многих его свойств: строения углеводородов, фракционного состава, химической и физической стабильности, содержания серы и др. Наименьшей детонационной стойкостью обладают нормальные парафиновые углеводороды, наибольшей – ароматические. Остальные углеводороды, входящие в состав бензинов, занимают промежуточное положение. Варьируя углеводородным составом за счет применения различных методов переработки нефти, получают бензины с различной детонационной стойкостью, которая характеризуется октановым числом.

Бензин, получаемый из нефти простой перегонкой, называется прямогонным и имеет низкое октановое число – в пределах 41-56. Это смесь углеводородов с температурой кипения не выше 185-205 ºC, которая будет использоваться как автомобильное топливо только после введения в него компонентов, обеспечивающих в смеси с ним нормальную работу двигателя. Для повышения октанового числа используют более современные методы переработки нефти: термический и каталитический крекинг, риформинг и т.д.(см. главу 1).

Октановое число (ОЧ) определяется на специальных одноцилиндровых установках с переменной степенью сжатия по моторному или исследовательскому методам. Сущность определения сводится к сравнительному сжиганию испытуемого бензина, октановое число которого нужно найти, и эталонного топлива, октановое число которого известно. Эталонное топливо составляют из двух компонентов: изооктана (ОЧ равное 100 ед.) и нормального гептана (ОЧ равное 0). Исследовательский метод более близок к работе двигателя в условиях города, а моторный – к условиям трассы.

Испытание ведут следующим образом. Одноцилиндровый двигатель заправляют испытуемым бензином. В процессе работы степень сжатия постепенно повышают до появления детонации. Ее интенсивность измеряют специальным датчиком. Фиксируют степень сжатия, при которой возникла детонация. После этого двигатель заправляют эталонным топливом и подбирают такую смесь изооктана и гептана, при которой интенсивность детонации будет такой же, как на исследуемом бензине. По количеству (процентному содержанию по объему) изооктана в смеси устанавливают октановое число.

В марке автомобильного бензина число характеризует минимальное значение октанового числа по моторному методу. Если в марке содержится буква «И», то октановое число определено исследовательским методом.

Октановые числа бензинов, определенные различными методами, отличаются (табл. 2). Это связано с различными условиями проведения методов исследования бензинов.

Таблица 2

Соотношение октановых чисел бензинов

Марка бензинаА-76АИ-92
ОЧпо моторному методу7685
по исследовательскому методу80…8292

Исследовательский метод характеризует антидетонационные свойства бензина при сравнительно низкой тепловой напряженности и рекомендуется для топлив легковых автомобилей. При повышении теплового режима (перевозка грузов, езда по плохим дорогам) фактическая детонационная стойкость бензинов больше соответствует ОЧ, определенным по моторному методу.

Требовательность двигателей к детонационной стойкости бензинов определяется, в первую очередь, степенью сжатия и диаметром цилиндра. Ориентировочно требуемое октановое число можно подсчитать по формуле:

(1)

где ОЧм — октановое число по моторному методу;

ε – степень сжатия;

– диаметр цилиндра, мм.

Бензин с высокой детонационной стойкостью можно получить подбором сырья, технологии его переработки, добавлением высокооктановых компонентов. Нередко ОЧ повышают, вводя в бензин антидетонаторы.

В качестве антидетонатора до недавнего времени, в основном, использовался тетраэтилсвинец Pb(C2H5)4 – (ТЭС). Это густая бесцветная ядовитая жидкость, легко растворяемая в нефтепродуктах и не растворяемая в воде.

В чистом виде ТЭС использовать нельзя, так как продукты сгорания (а именно свинец в чистом виде) откладываются и накапливаются в камере сгорания, что приводит к увеличению степени сжатия двигателя. В связи с этим ТЭС добавляют в бензин в смеси с выносителями свинца, образующими с ним при сгорании летучие вещества, которые удаляются из двигателя вместе с отработавшими газами.

В качестве выносителей применяют вещества, содержащие бром или хлор. Смесь ТЭС и выносителя, которая применяется как антидетонатор, называется этиловой жидкостью, а бензины – этилированными. Этилированный бензин очень ядовит и требует повышенных мер безопасности. Этилированные бензины окрашены: А-76 – в желтый цвет, АИ-93 – в оранжево-красный, АИ-98 – в синий. Содержание ТЭС не должно превышать 0,52 г на 1 кг бензина.

Введение жестких требований к экологичности двигателей заставило отказаться от использования этилированных бензинов. На это были две причины: токсичность самого ТЭС и применение на современных зарубежных автомобилях каталитических нейтрализаторов отработанных газов, у которых при воздействии свинца разрушается дорогостоящий (чаще платина) активный элемент.

Переход на неэтилированные бензины осуществляется путем изменения технологии производства бензинов и применения нетоксичных антидетонационных добавок. Хорошая эффективность (на уровне ТЭС) у марганцевых антидетонаторов: пентакарбонил марганца Mn(CO)5, метилциклопентадиэтилкарбонил марганца CH3C5H4Mn(CO)3 – (МЦКМ) и др. Марганцевые антидетонаторы – неядовитые жидкости, но их применение сдерживается из-за снижения долговечности двигателя. Наиболее перспективной является высокооктановая добавка – метил-трет-бутиловый эфир (МТБЭ). Физико-химические свойства МТБЭ близки к свойствам бензина. Добавка 10% МТБЭ к бензину повышает ОЧ на 5…6 ед. При производстве высокооктановых бензинов широко используется органическое вещество – кумол, а также: алкилбензин, изооктан, изопентан и толуол. Бензин АИ-95 и АИ-98 обычно получают с добавлением кислородсодержащих компонентов: метил-трет-бутилового эфира или его смеси с третбутанолом, получившей название фэтерол. Введение МТБЭ в бензин позволяет повысить полноту его сгорания и равномерность распределения детонационной стойкости по фракциям. Максимально допустимая концентрация МТБЭ в бензине составляет 15% из-за его относительно низкой теплоты сгорания и высокой агрессивности по отношению к резинам.

В случае смешения бензинов различной детонационной стойкости результирующее октановое число можно подсчитать по эмпирической формуле

(2)

где Н и В – октановые числа (по моторному методу) соответственно низко- и высокооктанового бензина;

x – доля высокооктанового бензина в смеси, %.

Фракционный состав. С фракционным составом связаны такие характеристики двигателя, как его пуск, образование паровых пробок в системе питания, прогрев и приемистость, экономичность и долговечность работы.

Фракции бензина определяются по кривой перегонки. Сущность определения фракционного состава сводится к следующему. Бензин в количестве 100 мл нагревают в специальном приборе. При этом образуются пары, которые необходимо охладить. При охлаждении пары конденсируются, превращаются в жидкость, которую собирают в мерный цилиндр.

Во время перегонки записывают температуру начала кипения (н.к) – падения первой капли в цилиндр, а затем температуры выкипания 10, 50, 90% и конца перегонки (к.п). Эти данные приводят в стандартах (нормативных документах) и паспортах качества бензина и обозначаются, соответственно, Тн.к, Т10%, Т50%, Т90%, Тк.п.

Для обеспечения надежного пуска двигателя при полной исправности систем питания и зажигания необходимо соблюдение следующих условий. Частота вращения вала двигателя на режиме пуска не должна опускаться ниже определенного порога, при котором снижение расхода воздуха приводит к перебоям в смесеобразовании и истечении топлива в диффузор карбюратора. Кроме того, понижение пусковой частоты вращения уменьшает интенсивность сжатия смеси в цилиндре двигателя, что приводит к увеличению потерь тепла в стенках цилиндра (возможна даже конденсация испарившегося топлива на холодных деталях двигателя) и потерь давления из-за прорыва газов через поршневые кольца.

Для успешного зимнего пуска частота вращения вала двигателя должна быть не ниже 70 об/мин.

Однако, кроме требования к частоте, существует требование к количеству паров бензина. В условиях двигателя воспламеняется и сгорает только испаренная часть бензина, подаваемого в мотор. Неиспарившиеся фракции в сгорании не участвуют и стекают в картер, смывая масляную пленку со стенок цилиндра.

Чем ниже температура воздуха при пуске холодного двигателя, тем в меньшем количестве испаряются легкие фракции бензина и тем более затруднен пуск. Для облегчения пуска количество легких фракций в бензине должно быть увеличено.

Зная температуру выкипания 10% бензина, можно оценить минимальную температуру воздуха, при которой пуск лёгкий (Тл.п), пуск возможен (Тв.п) и пуск невозможен (Тн.п):

(3)

(4)

(5)

Пример: имеем летний бензин Тн.к = 40 ºC, Т10% = 70 ºC; зимний бензин Тн.п = 35 ºC, Т10% = 55 ºC.

Тогда получим: летний бензин Тл.п=-3 ºC, Тв.п=-15,5 ºC, Тн.п=- 18,8 ºC; зимний бензин Тл.п=-15 ºC, Тв.п=-23 ºC, Тн.п=-28 ºC.

Полученные цифры нельзя воспринимать как незыблемый критерий возможности пуска. Формулы эмпирические, и результаты могут варьироваться как в одну, так и в другую сторону в зависимости от состояния двигателя в целом и аккумуляторной батареи и карбюратора в частности.

Однако повышенное содержание низкокипящих фракций в бензине не всегда является положительной особенностью. При этом может увеличиться склонность бензинов к образованию паровых пробок. Паровые пробки в системе питания двигателя – довольно часто встречающаяся неисправность при использовании зимнего бензина в летнее время. С целью устранения этих явлений применяются байпасные каналы для перекачки части топлива и выходу возникающих пузырей в бензобак.

Такие характеристики двигателя, как время его прогрева и приемистость связаны со значением температуры перегонки 50% бензина.

Приемистостью двигателя называют его способность обеспечивать быстрый разгон автомобиля. Чем меньше время прогрева двигателя, тем ниже расход бензина, затраты времени, а также износ деталей двигателя. С понижением температуры окружающего воздуха требуются бензины с более низкой температурой перегонки 50% бензина. Применение бензинов с Т50% для летнего сорта не выше 115 ºC и зимнего не выше 100 ºС обеспечивает быстрый прогрев двигателя и его хорошую приемистость.

Температура перегонки концевых фракций влияет на полноту испарения топлива, полноту сгорания, на токсичность выхлопа, а также на экономичность и износ двигателя.

Концевые фракции поступают в цилиндр, не испарившись, они не участвуют в сгорании, и экономичность двигателя ухудшается. Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло и увеличивают износ. Несгоревшее топливо откладывается также на поверхностях камеры сгорания и поршней в виде нагара, который инициирует детонационное сгорание и калильное зажигание.

Чем меньше Т90% и Тк.п бензина, тем лучше. Для бензинов установлены нормы на Т90% и Тк.п: для летнего бензина соответственно не выше 180 и 195-205 ºC, для зимнего – не выше 160 и 185-195 ºС.

Давление насыщенных паров (ДНП) характеризует испаряемость бензиновых фракций и их пусковые качества. Давление (или упругость) паров бензина зависит от его химического и фракционного составов. Как правило, чем больше в топливе содержится легкокипящих углеводородов, тем выше упругость паров.

Определяют ДНП, выдерживая испытуемый бензин 20 мин в герметичном резервуаре при 37,8 ºC при соотношении объемов бензина и его паров в пропорции 1:4. Фиксируют ДНП бензина по манометру.

Использование бензина с высокой упругостью паров приводит к повышенному образованию паровых пробок в системе питания, снижению наполнения цилиндров, падению мощности. В летних сортах бензинов ДНП не должно быть больше 66,7 кПа (500 мм рт.ст.). Зимние сорта бензинов имеют большее давление – от 66,7 до 93,3 кПа (500-700 мм рт.ст.).

Удельной теплотой сгорания называют количество теплоты, которое выделяется при полном сгорании 1 кг топлива. Различают два понятия теплоты сгорания: высшую и низшую. Высшая теплота (Нв) – это максимально возможное количество тепла, полученное расчетным способом при допущении, что вода, содержащаяся в топливе, а также получаемая от сгорания водорода, находится в капельно-жидком состоянии. Низшая теплота (НU) меньше высшей на величину тепла, затраченного на испарение воды. Для расчетов пользуются эмпирическими формулами, точность которых ± 2…4%:

(6)

Например: для бензина с составом С = 86%, Н = 14%, НU = 43574 кДж/кг.

Кислотность бензина оценивается щелочным числом – это количество щелочи КОН, необходимое для полной нейтрализации кислот в 100 мл топлива. Для бензинов нормированное значение щелочного числа – не более 5 мг КОН на 100 мл топлива.

Индукционный период. Процесс окисления бензина происходит сначала медленно, затем резко ускоряется. Период до резкого ускорения окисления называется индукционным. Этот показатель, определяемый в лабораторных условиях, характеризует химическую стабильность бензина. Например, значение индукционного периода ≈ 900 мин гарантирует стабильность бензина в течение длительного времени (гарантийный срок хранения – 5 лет со дня изготовления). Определение длительности индукционного периода при хранении – слишком долгий процесс, поэтому применяются лабораторные методы определения индукционного периода в условиях ускоренного окисления. Ускорение окисления достигается за счет повышения температуры (обычно до 100 ºС) и подачи чистого кислорода. Чтобы избежать испарения бензина, процесс ведут под давлением ≈ 7 атм в герметичном сосуде. О начале вступления топлива во взаимодействие с кислородом судят по падению давления в сосуде, что свидетельствует о переходе газообразного кислорода в химические соединения с углеводородами топлива.

Химически нестабильные бензины способствуют образованию на деталях двигателя отложений (осадков, лаков, нагаров), обусловленных содержанием в бензинах так называемых фактических смол.

Марки бензинов и их характеристики. Основными марками, вырабатываемого автомобильного бензина в России являлись А-76, А-80, АИ-91, А-92, АИ-95, Аи-98. Примерные компонентные составы автомобильного бензина различных марок приведены в табл. 1. В последнее время ассортимент автобензина значительно пополнился за счёт новых марок, выпускаемых по техническим условиям. Это обусловлено резким ростом производства неэтилированного бензина и сокращением производства бензина этилированного.

С развитием автомобилестроения и ужесточением экологических требований к эксплуатации транспортных средств. Новые технологии в двигателестроении предъявляют более высокие требования к его эксплуатации – он нуждается в более в высококачественном топливе.

Одним из главных способов повышения качества автомобильных бензинов стало комплексное улучшение эксплуатационных свойств, в том числе, за счет добавления многофункциональных моющих присадок. В связи с этим, современные марки бензинов, выпускаемых нефтеперерабатывающими заводами Российской Федерации, отличаются количеством, разнообразием присадок и, соответственно, маркой.

Таблица 1

Средние компонентные составы автомобильного бензина

КомпонентА-76 (А-80)А-76*АИ-91А-92А-92*АИ- 95АИ- 98
Бензин каталитического риформинга:
Мягкого режима40-8070-6060-9060-8850-

100

Жесткого режима40-10040-10010-405-9025-88
Ксилольная фракция10-2010-3020-4020-40
Бензин каталитического крекинга20-8010-6010-8510-8510-8510-5010-20
Бензин прямой перегонки20-6040-10010-2010-2010-80
Алкилбензин5-205-2010-3515-50
Бутаны+

изопентан

1-71-51-101-101-71-101-10
Газовый бензин5-105-105-105-105-10
Толуол0-70-108-1510-15
Бензин коксования1-55-10
Гидростабилизированный бензин пиролиза10-3510-2010-3010-3010-3010-2010-20
МТБЭ<=85-125-1210-1510-15
Примечание: * — Этилированный.

Все марки современных автомобильных топлив, в том числе и бензинов, выпускаются по Техническому регламенту «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу» утвержденному Правительством РФ от 27 февраля 2008 г. №118 с изменениями от 7 сентября 2011 года. В соответствии с Федеральным законом «О техническом регулировании» все выпускаемые марки автомобильных бензинов в оборот на территории РФ должны проходить обязательное подтверждение соответствия установленным нормам по экологичности и делятся на классы: 2,3,4,5 (Приложение 1).

Выпуск в оборот автомобильного бензина на территории РФ допускается в отношении:

класс 2 – допускался до 31 декабря 2012 г.; класса 3 – до 31декабря 2014 г;

класса 4 – до 31 декабря 2015 г.; класса 5 – срок не ограничен.

Автомобильные бензины, за исключением марки АИ-98, подразделяются на виды:

Летний – для применения во всех районах, кроме северных и северовосточных, в период с 1 апреля до 1 октября; в южных районах допускается применение летнего бензина в течение всего года.

Зимний – для применения в течение всех сезонов в северных и северо-восточных районах и остальных районах с 1 октября по 1 апреля.

Товарные бензины производства «НОРСИ» подразделяются на марки (табл. 3):

А-76 (неэтилированный и этилированный). ГОСТ 2084-77. АИ-92 (неэтилированный) ТУ 38.001165-87. АИ-95 (неэтилированный) ГОСТ 2084-77.

Таблица 3 

Технические характеристики автомобильных бензинов

Наименование показателейНормы по ГОСТ 2084-77
А-76

н/э

А-76 эА-92

н/э

А-95

н/э

Детонационная стойкость

(ОЧм, не менее)

76768385
Концентрация свинца, г/дм3

бензина не более

0,0130,0170,0130,013
Фракционный состав:
1. Тн.п бензина, ºС, не ниже3535не30
2. Т10% ºС, не выше7070норм.75
3. Т50% ºС, не выше11511575120
4. Т90% ºС, не выше180180120180
5. Тк.п бензина, ºС, не выше195195180205
6. Остаток в колбе, %1,51,52051,5
7. Потери, %2,52,51,52,5
2,5
Давление насыщенных паров,

мм.рт.ст., не более

500500600500
Индукционный период бензина на месте

производства, мин, не менее

9001200600900
Массовая доля серы, %, не более0,100,100,050,10

С 1 января 1999г. на территории России введён в действие новый стандарт на бензины – ГОСТ Р 51105-97 «Топлива для двигателей внутреннего сгорания. Неэтилированные бензины». Основой для его разработки явился евростандарт ЕN 228-1993 с таким же названием.

В зависимости от октанового числа, определенного исследовательским методом, устанавливаются следующие марки неэтилированных автомобильных бензинов: “Нормаль-80” – не менее 80; “Регуляр-91” – не менее 91; “Премиум-95” – не менее 95; “Супер-98” – не менее 98.

Ряд физико-химических и эксплуатационных свойств данных бензинов указан в табл. 4.

Остальные свойства новых бензинов классифицируются иным образом, по сравнению с ранее действующими стандартами.

Таблица 4

Физико-химические и эксплуатационные свойства автомобильных бензинов

Наименование/свойстваЗначения для марки
“Нормаль-

80”

“Регуляр-

91”

“Премиум-

95”

“Супер-

98”

Плотность при 15 ºС,

кг/м3

700-750720-780725-780725-780
ОЧ, единиц, не менее по моторному методу

по исследовательскому методу

76,0

80,0

82,5

91,0

85,0

95,0

88,0

98,0

Концентрация фактиче-

ских смол, мг/100 см3, не более

5,0
Массовая доля серы, %, не более0,05
Индукционный период, мин, не менее900
Концентрация марганца, мг/дм3, не более501800
Внешний видчистый, прозрачный

По новому ГОСТу каждая марка бензина делится по испаряемости на пять классов (табл. 2.5) в зависимости от климатического района страны:

  1. – для района I с 1 апреля по 1 октября;
  2. – для районов II и III с 1 апреля по 1 октября;
  3. – для районов IV и V с 1 апреля по 1 октября;
  4. – для районов II и III с 1 октября по 1 апреля;
  5. – для районов IV и V с 1 октября по 1 апреля.

Таблица 5

Эксплуатационные свойства классов бензинов по испаряемости

Наименование/свойстваКласс бензина
12345
Давление насыщенных паров, кПа min

max

35

70

45

80

55

90

60

95

80

100

Фракционный состав:

температура начала перегонки, ºС, не ниже

пределы перегонки, ºС, не выше:

10%

50%

90%

3535Не нормируется
 

75

120

190

 

70

115

185

 

65

110

180

 

60

105

170

 

5

100

160

Конец кипения, ºС, не выше215

Условно принятый район I характеризуется теплым климатом с мягкой зимой. В России это побережье Черного моря, Северный Кавказ, Калмыкия и т.д.

Район II характеризуется умеренно-холодным климатом (базовый расчет на Западную Сибирь).

Район III характеризуется умеренным климатом (центральные области страны).

Район IV – с очень холодным климатом (Якутск, Оймякон и другие). Район V – с холодным климатом (например, Салехард).

Разделение бензинов по классам в зависимости от климатических районов – очень существенный шаг в сторону увеличения безотказности и долговечности работы автомобильного парка страны.

Всероссийский Научно-исследовательский институт по переработке нефти ОАО «ВНИИ НП» разработал новые требования к неэтилированным автомобильным бензинам с улучшенными экологическими свойствами изготавляемым по техническим условиям ТУ 38.401-58-344-2008, то есть – «Бензины автомобильные неэтилированные с улучшенными экологическими свойствами А-80 (АИ-92, АИ-93, АИ-95, АИ-98) ТУ 38.401-58-344-2008. Свойства современных бензинов приведены в табл. 6.

Таблица 6

Бензины автомобильные неэтилированные с улучшенными экологическими свойствами ТУ 38.401-58-344-2008

Наименование показателяЗначение для марки
АИ-80АИ-92АИ-93АИ-95АИ-98
Детонационные стойкость:

ОЧ не менее:

по моторному методу

по исследовательскому

76

80

82,5

92

85

93

85

95

88

98

Концентрация свинца не более, г/дм30,005
Фракционный состав:

температура начала перегонки, ºС,  не ниже (летнего/зимнего*):

пределы перегонки, ºС, не выше:

10% (летнего/зимнего)

50% (летнего/зимнего)

90% (летнего/зимнего)

 

 

 

35

205/195

70/55

115/110

180/160

Давление насыщенных павров, кПа:

летнего

зимнего

35-66,7

66,7-93,3

Массовая доля серы не более, %0,050,03
Содержание водорастворимых кислот, %отсутствует
Содержание механических примесей и воды, %отсутствует
Примечание: * температура начала перегонки для зимних сортов бензина не нормируется

Марку бензина, необходимую для нормальной работы ДВС, устанавливают заводы-изготовители и указывают ее в инструкции по эксплуатации автомобиля. Не допускается работа автомобиля на бензине несоответствующего качества. Применение бензина с ОЧ ниже установленного приведет к детонации, а применения бензина с более высоким ОЧ может привести к возрастанию температуры сгорания горючей смеси и как следствие – к прогару клапанов. Также увеличатся расходы на эксплуатацию автомобиля, из-за более высокой стоимости бензина.

Чтобы избежать несвоевременного снижения долговечности и надежности работы двигателя автомобилей импортного производства, а также не вызвать неоправданного увеличения затрат на бензин, необходимо правильно подобрать марку используемого бензина. Соответствие отечественных и зарубежных бензинов приведены в табл. 7.

Таблица. 7

Соответствие некоторых марок бензинов отечественного и зарубежного производства

Отечественный бензинЗарубежный бензин
Марка, ГОСТ, ТУМаркаСпецификацияСтрана
А-80

ТУ 38.401-58-144-98

Обычный Type 2ONORM C113

JIS K 2202-80

CAN-2-3,5-79

Австрия

Япония

Канада

АИ-92

ТУ 38.401-58-144-98

A-93

Normal

БДС 8638-82

DIN 51600

DIN 51607

ASTM D439-83

Болгария

Германия

Германия

США

АИ-95

ТУ 38.401-58-144-98

Premium SuperbenzinBS 7070-85

SNV 181162

Великобритания

Швейцария

АИ-98

ТУ 38.401-58-144-98

A-96

4 star

Super

БДС 86 38-82

BS 4040-78

SNV 1811611/1

Болгария

Великобритания

Швейцария

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *