Грунт

Устойчивость стенок выемок, искусственное закрепление грунтов

Для уменьшения объемов земляных работ, а также в случаях, когда разработка выемок с откосами невозможна из-за стесненности площадки или наличия грунтовых вод, устраивают выемки с вертикальными стенками.

Временное крепление стенок земляного сооружения может быть выполнено в виде деревянного или металлического шпунта, деревянных щитов с опорными стойками, щитов с распорными рамами, с подкосным креплением стенок и ряда других конструкций (рис. 1).

Шпунтовое ограждение является наиболее надежным, но и самым дорогим из существующих способов. Применяют шпунт при разработке выемок в водонасыщенных грунтах вблизи существующих зданий. Шпунт, металлический или деревянный, забивают в грунт на глубину, превышающую глубину будущего котлована на 2…3 м (величина расчетная). Шпунт забивают до разработки выемки, чем обеспечивают устойчивое и естественное состояние грунта за пределами выемки.

В качестве металлических стоек используют прокатные профили (швеллер, двутавр, трубы) или специально выпускаемый прокат. Шпунт может быть сплошным в виде единой стенки. Если шпунт прерывистый, то между стойками по мере отрывки котлована забивают деревянную забирку – щиты, отдельные доски, брусья (фото рис. 1).

Распорное крепление применимо для узких траншей глубиной 2…4 м в сухих и маловлажных грунтах и состоит из вертикальных стоек, горизонтальных досок, дощатых (сплошных или несплошных) щитов и распорок, прижимающих стойки и щиты к стенкам траншеи. Стойки, как и распорки, устанавливают по длине траншеи через 1,5…1,7 м одна от другой и по высоте через 0,6…0,7 м (фото рис. 1).

В связных грунтах естественной влажности и глубиной до 3 м горизонтальную забирку устраивают из досок толщиной 5см с прозорами на ширину доски, при большей глубине забирку делают сплошной из щитов. Распорное крепление трудоемко и затрудняет производство работ в траншее, особенно при прокладке коммуникаций, поэтому если позволяют условия, то применяют другие виды креплений.

крепления стенок выемок

крепления стенок выемок

Способы крепления стенок выемок

Рис. 1 — Способы крепления стенок выемок: а) подкосное; б) анкерное; в) консольное; г) консольное из буронабивных свай или «стены в грунте»; д) из различных типов стальных шпунтов; е) распорное с горизонтальными щитами и прозорами; ж) консольно-распорное; з) – инвентарная трубчатая распорная рама; и) инвентарные щиты ограждений (забивка); 1 – стойка; 2 – забирка из досок; 3 – подкос; 4 – бобышка; 5 – анкер; 6 – оттяжка; 7 – шпунтовая стенка; 8 – буронабивные сваи; 9 – то же, в обсадной трубе; 10 – типы шпунта; 11, 13 – распорки; 12 – стойка распорной рамы; 14, 15 – наружная и внутренняя трубы; 16 – стяжная муфта; 17 – щиты забирки

Вместо деревянных стоек и распорок используют стальные трубчатые стойки и телескопические распорки, длина которых изменяется за счет вращения винтовых муфт. Эти инвентарные распорные рамы эффективны ввиду их малой массы, легкого монтажа и демонтажа. Металлические трубчатые стойки по высоте имеют отверстия для крепления распорок.

Распорка телескопического типа состоит из наружной и внутренних труб, поворотной муфты и опорных частей. В зависимости от ширины траншеи расстояние между стойками устанавливают путем выдвижения внутренней трубы из наружной, которое фиксируется болтом-стопором, вставляемым в совмещенное отверстие труб. Полное прижатие щитов к стенкам выемки осуществляют поворотом до упора муфты с винтовой нарезкой.

Анкерное крепление. Для восприятия опрокидывающих моментов, возникающих от действия грунта на шпунтовые, свайные и другие ограждения выемок, применяют анкерные устройства (грунтовые анкеры). Технология устройства грунтовых анкеров различных видов рассматривается в 5 части УМК.

Наиболее простое и часто встречаемое анкерное крепление выполняется следующим образом. На уровне дна котлована или траншеи вдоль стенок забивают с шагом 1,5…2,0 м (в зависимости от глубины котлована и влажности грунта) стойки на глубину 0,5…1,0 м ниже уровня дна котлована. Эти стойки на уровне верха котлована оттягивают анкерными тягами в виде двух пластин, на расстояние, превышающее угол естественного откоса и прикрепляют эти пластины к наклонно забитому анкеру.

За установленными и закрепленными стойками укладывают щиты или доски. Анкерные тяги несколько заглубляют в грунт, чтобы они не мешали передвижению людей по бровке котлована.

Подкосное крепление обычно устраивают при отрывке широких котлованов с расположением внутри котлована. Крепление состоит из щитов или досок, прижатых к грунту стойками, раскрепленными подкосами с защемлением с помощью упоров. Вертикальные стойки приобретают устойчивость за счет наклонных подкосов и горизонтальных распорок, при этом получившийся треугольник устойчив от скольжения благодаря забиваемым наклонным анкерам в угле соединения распорки и подкоса.

Дощатые щиты устанавливают между стенками котлована и стойками, свободное расстояние между ними засыпают землей для создания цельной единой конструкции, которая всегда будет устойчивой. Подобное крепление используют ограниченно, так как подкосы и упоры, расположенные в котловане, усложняют производство основных работ.

По мере выполнения или окончания работ крепление котлованов и траншей разбирают снизу вверх.

Искусственное закрепление грунтов. Закрепление грунтов применяют при создании вокруг разрабатываемых выемок водонепроницаемых завес или повышения несущей способности грунтовых оснований. В зависимости от физико-механических свойств грунта и требуемых прочностных характеристик, назначения закрепления и других свойств укрепленного грунта применяют замораживание, цементацию, силикатизацию, битумизацию, термический, химический, электрохимический и другие способы искусственного закрепления грунта.

Замораживание грунтов применяют в сильно водонасыщенных грунтах (плывунах) при разработке глубоких выемок. Для этого по периметру котлована погружают замораживающие колонки из труб, соединенных между собой трубопроводом, по которому нагнетают специальную жидкость – рассол (растворы солей с низкой температурой замерзания), охлажденный холодильной установкой до минус 20…25 °С (рис. 2).

замораживание грунта при близком залегании водоупора

Схема искусственного замораживвания грунтов

Рис. 2 — Схема искусственного замораживвания грунтов: а) при близком залегании водоупора; б) при глубоком залегании водоупора; в) схема холодильной установки; 1 – замораживающая колонка; 2 – отводящая труба; 3 – питающая труба; 4 – коллектор; 5 – распределитель; 6 – циркуляционный насос; 7 – испаритель; 8 – терморегулирующий вентиль; 9 – конденсатор; 10 – маслосборник; 11 – линия низкого давления хладоносителя; 12 – компрессор; 13 – линия высокого давления хладоносителя; 14 – замороженный грунт

Охлаждающие иглы состоят из наружных труб, закрытых и заостренных снизу, и внутренних, вставленных в них коаксиально и открытых снизу. Рассол поступает во внутреннюю трубу, а в нижней части колонки переходит в наружную трубу, по которой поднимается вверх, после чего направляется к следующей колонке.

Окружающий грунт замерзает концентрическими цилиндрами с постепенно увеличивающимися диаметрами. Эти цилиндры смерзаются в сплошную стенку мерзлого грунта, которая выполняет функцию конструкции ограждения временной выемки. Расстояние между колонками зависит от гидрогеологических и температурных условий производства работ, глубины выемки и назначается в среднем от 1,5 до 3 м.

Цементация осуществляется для закрепления крупно- и среднезернистых песков, а также трещиноватых скальных пород и выполняется путем нагнетания в грунт цементного раствора через инъекторы.

Инъектор (рис. 3) состоит из отдельных звеньев гладких и перфорированных труб длиной 1,5 м и внутренним диаметром 19…38 мм; внизу он имеет острый наконечник, а в верхней части – наголовник, к которому присоединяется шланг для подачи раствора под давлением.

На глубину до 15 м инъекторы погружаются забивкой пневматическими молотами, вибропогружателями, при больших глубинах погружения предварительно пробуривают скважины, в которые трубы и опускают. В зависимости от требуемых расчетных прочностных характеристик грунта через инъекторы подается цементный раствор состава от 1:1 до 1:10 по массе (цемент : вода); оптимальное давление обычно соответствует 1 атм на 1 пог. м трубы инъектора.

Радиус закрепления в трещиноватых скальных породах достигает 1,2…1,5 м, в крупнозернистых песках – 0,5…0,75 м, в песках средней крупности – 0,3…0,5 м. Прочность укрепленных грунтов может достигать 3,5 МПа. Нагнетание раствора в скважину прекращают при достижении заданного поглощения или когда при заданном давлении резко снижается расход раствора (за 20 мин в скважину попадает менее 10 л раствора).

Цементация оснований

Рис. 3 — Цементация оснований: а) погружение инъектора; б) нагнетание раствора; в) последовательность нагнетания раствора при устройстве противофильтрационной завесы; г) схема цементации нисходящими зонами; д) схема цементации восходящими зонами; 1 – отбойный молоток; 2 – оголовок; 3 – труба-удлинитель; 4 – перфорированная часть с острием; 6 – домкраты; 7 – растворопровод; 8 – зоны цементации; 9 – скважины; 1-я, 2-я и 3-я – зоны цементации по высоте

Силикатизация (химический способ) – последовательное нагнетание в грунт водного раствора силиката натрия (жидкого стекла) и ускорителя твердения (раствора соли хлора, обычно хлористого кальция). Часто этот способ называют двухрастворным закреплением.

Применима силикатизация в песках, плывунах, лессовидных грунтах. Она позволяет повысить прочность, водонепроницаемость и общую устойчивость грунта.

Метод может применяться как в сухих, так и насыщенных водой грунтах, даже при высоких коэффициентах фильтрации от 2 до 80 м/сут. В грунт последовательно нагнетают при давлении до 15 атм (1,5 МПа) раствор жидкого стекла и хлористого кальция, которые в результате химической реакции образуют нерастворимое вещество (гель кремниевой кислоты), прочно соединяющее в единый монолит примыкающий естественный грунт (рис. 4).

Инъекторы изготовливают из стальных цельнотянутых труб с внутренним диаметром 19…38 мм и толщиной стенки не менее 5 мм. Нижняя перфорированная часть инъектора имеет длину 0,5…1,5 м. Насосы для нагнетания подбирают с расчетом подачи раствора в каждый установленный инъектор от 1 до 5 л/мин.

химическое закрепление грунтов

Схема установки для химического закрепления грунтов инъектор

Рис. 4. Схема установки для химического закрепления грунтов: а) установка; б) инъектор; 1 – распределительный напорный коллектор; 2 – насос; 3 – емкость для раствора; 4 – инъектор; 5 – массив закрепленного грунта; 6 – слабый грунт; 7 – прочный подстилающий грунт; 8 – наголовник; 9 – глухие звенья; 10 – перфорированное звено (с отверстиями диаметром 1…3 мм); 11 – наконечник

При мелких пылеватых песках в грунт подают раствор фосфорной кислоты и жидкого стекла под давлением до 5 атм (0,5 МПа), в результате реакции также получается нерастворимый гель (кремниевой кислоты и фосфорнокислого натрия). Однорастворное закрепление из смеси силиката натрия и отвердителя применяют для слабодренирующих грунтов с коэффициентом фильтрации менее 0,3 м/сут. Прочность закрепленного грунта находится в пределах 0,3…0,6 МПа.

В лессовидные грунты нагнетают при давлении до 5 атм (0,5 МПа) только раствор жидкого стекла, который вступает в реакцию с содержащимися в этих грунтах солями кальция, в итоге также получается нерастворимый гель.

Способ силикатизации широко используется при проходке шахт и туннелей, при строительстве метрополитенов.

Битумизация применяется для закрепления песчаных и сильно трещиноватых грунтов, но что более важно – для прекращения через них фильтрации воды. Горячий битум нагнетают в грунт через инъекторы, установленные в пробуренных скважинах. К инъекторам, обогреваемым электрическим током, горячий битум подается из котлов насосом по трубам при давлении, достигающем 50…80 атм (5…8 МПа).

Инъектор состоит из двух труб, внутренняя с отверстиями для выхода битума, опускается в грунт ниже наружной, защитной трубы. Нагнетание битума осуществляется в несколько приемов. После первого нагнетания под давлением 2…3 атм (0,2…0,3 МПа) битуму дают возможность растечься по всем заполняемым полостям и начать затвердевать, уменьшаясь в объеме. Перед последующими нагнетаниями битум в скважине разогревают электронагревателями инъектора. Песчаные грунты можно закреплять холодной битумной эмульсией.

Термическое укрепление грунтов заключается в обжиге лессовидных и пористых суглинистых грунтов раскаленными газами через пробуренные в грунте скважины диаметром 10…20 см. Скважины пробуривают в шахматном порядке на расстоянии друг от друга 2…3 м и на глубину до 15 м, сверху устье скважины заканчивается бетонным оголовком, в котором размещается форсунка для сжигания топлива.

К форсунке по шлангам подается топливо и сжатый воздух. Топливо может применяться жидкое (нефть, мазут, соляровое масло) или газообразное (природный газ). Сжатый воздух подается под избыточным давлением, превышающим давление в трубопроводе с топливом, благодаря этому избыточное давление позволяет отрывать пламя от форсунки и распространять его на всю глубину скважины.

В процессе обжига в скважине поддерживается температура 600…1100 °С. За счет такой высокой температуры происходит процесс расплавления и последующего спекания грунта. Обжиг может продолжаться 5…10 сут, в результате образуется керамическая свая диаметром 2…3 м. Расход топлива за весь период обжига составляет до 100 кг/пог. м скважины. Прочность грунта в среднем 1,0…1,2 МПа, но может доходить до 10 МПа.

Электрическим способом закрепляют влажные глинистые грунты. Способ основан на использовании эффекта электроосмоса, для чего через грунт пропускают постоянный электрический ток с напряженностью поля 0,5…1 В/см и плотностью 1…5 А/м2. В результате действия тока глина осушается, сильно уплотняется и теряет способность к пучению.

Электрохимическое закрепление грунтов. Это способ применяют для глинистых и илистых грунтов. В грунт параллельными рядами через 0,6…1,0 м забивают металлические стержни или трубы, по которым пропускают постоянный электрический ток напряжением 30…100 В и силой тока 0,5…7 А на 1 м вертикального сечения закрепляемого грунта.

При погружении в грунт чередуют через ряд металлические стержни (аноды) и трубы (катоды), через которые в грунт подается раствор хлористого кальция, силиката натрия, хлорного железа и других химических добавок, увеличивающих проходимость тока, а значит и интенсивность процесса закрепления грунта. Методы применимы при малых коэффициентах фильтрации грунта 0,2…2 м/сут.

В результате насыщения грунта раствором хлористого кальция и пропускания затем по этому грунту электрического тока в грунте происходят необратимые изменения, в частности, они перестают пучиниться, увеличиваются их прочностные характеристики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *