Содержание страницы
Термин «железоуглеродистые сплавы» применяется для сплавов железа с углеродом и классифицируются по содержанию в них углерода, как показано в Таблице 1. Чистое железо — относительно мягкий материал, и его трудно использовать в каких-либо коммерческих целях. Чистое железо содержит 99.9917% Fe, имеет твердость НВ 490 МПа, плотность 7.874 г·м-3
Таблица 1. Сплавы железа с углеродом
Материал | Процентное содержание углерода |
Сталь | 0.05…2.14 |
Ковкий чугун | 2.4…2.9 |
Литейный чугун | 2.2…4.3 |
Термин «углеродистая сталь» употребляется для таких сталей, у которых, по существу, присутствуют только железо и углерод, а термин «легированная сталь» — для сплава, в который входят другие элементы. Нержавеющие стали относятся к сплавам, имеющим высокое процентное содержание хрома, а следовательно, высокое сопротивление коррозии. Термин «инструментальная сталь» определяет углеродистые стали или сплавы, которые были закалены и подвергнуты отпуску и обладают необходимыми свойствами для применения их в качестве инструментального материала.
Далее перечислены различные типы железоуглеродистых сплавов.
1. Легированные стали
Термин «низколегированная сталь» используется для сплавов сталей, имеющих легирующие добавки меньше 2%, «среднелегированная сталь» содержит добавки от 2% до 10%, а «высоколегированная сталь» имеет добавки выше 10%. Во всех случаях количество углерода в сплавах меньше 1%. К сталям добавляются такие простые элементы, как алюминий, хром, кобальт, медь, свинец, марганец, молибден, никель, фосфор, кремний, сера, титан, вольфрам, ниобий, бор и ванадий.
Имеется целый ряд технологических способов, при использовании которых легирующие элементы могут влиять на свойства стали. Основные из них следующие:
- Условие затвердевания стали.
- Форма карбидов.
- Форма графита.
- Стабильность аустенита или железа.
- Изменение критической скорости охлаждения.
- Улучшение коррозионного сопротивления.
- Изменение условий роста зерна.
- Улучшение обрабатываемости на станках.
2. Углеродистые стали
Как уже отмечалось, в углеродистых сталях присутствуют только железо и углерод. Такие стали с содержанием углерода меньше 0.80% называются доэвтектоидными, с содержанием углерода между 0.80% и 2.14% — заэвтектоидными относительно эвтектоидного состава 0.8% С. Стали с содержанием углерода между 0.10% и 0.25% обозначают как мягкие, между 0.20% и 0.50% — как среднеуглеродистые, а при содержании углерода более чем 0.50% — как стали с повышенным содержанием углерода. Равновесная диаграмма состояния железо-углерод показана на Рис. 1.
Рис. 1. Равновесная диаграмма состояния железо-углерод
3. Литейные чугуны
Литейные чугуны могут быть разделены на 5 основных категорий:
- Серые чугуны. Содержат углерод (графит) в пластинчатой форме. Большинство типов серого чугуна имеют графит в перлитовой структуре.
- Пластичные чугуны, или чугуны с шаровидным графитом. Содержат графит в форме шаровидных включений, образовавшихся во время литья при добавлении к расплавам магния или церия. Материал имеет большую пластичность, чем серые чугуны.
- Белые чугуны. В них нет графита, содержат твердый цементит. Название получили за специфический белый (светлый) блеск в изломе.
- Ковкие чугуны. Получаются при тепловой обработке белых чугунов. Их иногда разделяют на две категории, ферритовый и перлитовый, или рассматривают как три группы: белосердечный, черносердечный и перлитовый. Ковкие чугуны имеют лучшую тягучесть, чем серые литейные чугуны, и это, в сочетании с их высоким пределом на растяжение, способствует их широкому применению.
- Высоколегированные чугуны. Сплавы, которые содержат соответствующие добавки таких элементов, как кремний, хром, никель или алюминий. Их можно рассматривать как две категории чугунов: безграфитные белые чугуны и чугуны, содержащие графит. Безграфитные белые чугуны имеют очень высокое сопротивление истиранию. В содержащих графит чугунах он находится в форме чешуек или шаровидных включений, и к ним применимы определения теплового сопротивления серых и пластичных чугунов. Такие типы чугунов имеют весьма высокое коррозионное сопротивление и называются коррозионностойкими.
4. Автоматные стали
Эти стали имеют улучшенную обрабатываемость на станках (резанием) как следствие добавки серы, свинца, селена и/или кальция. Такие стали называются соответственно сернистыми, свинцовосодержащими, селеносодержащими и/или кальцийсодержащими автоматными. Фосфор может тоже улучшать обрабатываемость стали, способствуя образованию самоломающейся стружки во время механической обработки.
5. Мартенситно-стареющие высокопрочные стали
Мартенситно-стареющие высоколегированные стали обладают значительной прочностью, которая может быть увеличена выделением вторичных фаз (преципитатов). Это сплавы железа с никелем (8.22%), иногда с кобальтом и очень малым содержанием углерода (меньше 0.03%). Для старения в мартенсите сплавы легируют титаном, молибденом, вольфрамом. Никель и кобальт уменьшают растворимость легирующих добавок в α- железе (Feα), что приводит к упрочнению при старении и повышает сопротивление хрупкому разрушению. Содержание углерода небольшое, поскольку относительно высокое содержание никеля приводит к образованию графита в структуре, что может вызвать снижение прочности и твердости стали.
Типичная тепловая обработка состоит в нагреве стали выше 830°С и охлаждении на воздухе. В результате получается безуглеродистый мартенсит. Последующая механическая обработка и деформация стали приводят к увеличению ее твердости путем выделения преципитатов при нагреве выше 500°С в течение двух или трех часов. До обработки материал имеет типичный предел прочности на растяжение около 700 МПа, или МН·м-2, и твердость 300 НV, в то время как после обработки соответственно около 1700 МПа, или МН·м-2, и 550 НV.
6. Нержавеющие стали
Есть несколько типов нержавеющих сталей: ферритные, мартенситные и аустенитные. В их состав входит хром, повышающий сопротивление коррозии.
Ферритные стали содержат хрома 12.25% и меньше 0.1% углерода. Такие стали после охлаждения жидкого состояния только изменяются к ферриту и таким образом, поскольку не образуется аустенит, затвердевают при закалке и не могут дать мартенсит. Тем не менее они могут твердеть при холодной обработке.
Мартенситные стали содержат хрома 12.18% и углерода 0.1…1.2%. После охлаждения жидкого состояния они образуют аустенит и, таким образом, могут твердеть путем закалки до заданного состояния структуры мартенсита с частицами карбида хрома. Мартенситные стали подразделяются на три группы: нержавеющие чугуны, нержавеющие стали и высокохромистые стали. Нержавеющие чугуны содержат около 0.1% углерода и 12.13% хрома, нержавеющие стали — 0.25…0.30% углерода и 11.13% хрома, а высокохромистые стали — 0.05…0.15% углерода, 16.18% хрома и 2% никеля.
Аустенитные стали содержат хрома 16.26%, более 6% никеля и очень мало углерода, 0.1% или менее. Такие сплавы полностью аустенитные при всех температурах. Они могут твердеть и при закалке, и при холодной обработке.
Во время сварки у нержавеющих сталей могут происходить структурные изменения, которые снижают коррозионную стойкость материала. Этот эффект, известный как разрушение сварного соединения, является результатом выделения преципитатов хрома, богатого карбидами на границах зерен. Единственный путь к преодолению его заключается в стабилизации стали путем добавки к ней других элементов, таких как ниобий и титан, которые имеют большее сходство с углеродом, чем хром, и таким образом формируются карбиды во включениях преципитатов в хроме.
7. Инструментальные стали
Не имеющие примесей углеродистые стали обладают твердостью благодаря высокому содержанию в них углерода. Эти стали нуждаются в закалке в холодной воде для получения максимальной твердости. К сожалению, они немного хрупкие и им не хватает пластичности. Там, где требуется материал с умеренной пластичностью, может применяться углеродистая сталь с содержанием углерода около 0.7%. А там, где твердость является основным требованием, а ударная вязкость не важна, могут применяться углеродистые стали с содержанием углерода около 1.2%.
Сплавы инструментальных сталей делаются более твердыми и более износостойкими при добавлении к ним элементов, способствующих появлению стойких твердых карбидов. В качестве таких элементов применяются марганец, хром, молибден, вольфрам и ванадий. Марганцевая инструментальная сталь содержит примерно 0.7…1% углерода и 1.0…2.0% марганца. Такая сталь закалена в масле от температуры 780…800°С и затем отпущена. Марганец может быть частично заменен хромом, что только улучшит вязкость стали. Сопротивление ударной нагрузке у инструментальных сталей предназначается для улучшения вязкости при воздействии на них ударами. Для этого необходимо мелкое зерно, которое получают при добавлении ванадия. Инструментальные стали, рассчитанные на применение в процессах с деформированием в горячем состоянии, требуют сохранения своих свойств при рабочих температурах. Хром и вольфрам, если они добавлены к сталям в форме карбидов, которые имеют и стойкость, и твердость, сохраняют свойства стали до высоких температур.
Стали, используемые для обработки с высокой скоростью на станках, называются быстрорежущими инструментальными сталями. В результате обработки материал нагревается. Такие стали не должны отпускаться при высоких температурах, которые появляются во время обработки на станках. Считается, что комбинация вольфрама и хрома в виде карбидов, сформированных при этих элементах, дает требуемые свойства стали. Они будут особенно прочны при высоких температурах.